Preferred Schematic Report

3 Existing Conditions Evaluation

- Revised Building Conditions Analysis Gymnasium
- Revised Existing Conditions Structural Report
- Environmental Site Assessment Report
- Hazardous Materials Report
- Geotechnical Report
- Site Survey

Preferred Schematic Report

Introduction

Please refer to April 1, 2011 Preliminary Design Program for evaluation of existing conditions. Additional site and building evaluation was performed since the PDP was submitted as new information was necessary in analyzing the Options. Additional information in this section includes: revised building conditions analysis for the existing gymnasium, revised structural evaluation of the building, and new evaluations for the Phase 1- Environmental Site Assessment, Hazardous Materials, and Geotechnical. In addition, an updated Topographic Site Survey has been included.

Revised Building Conditions Analysis - Gymnasium

See attached revised Building Conditions Analysis for the Gymnasium buildings dated June 8, 2011. Further analysis was performed as the final alternatives included the potential for reusing the existing gymnasium spaces. The existing upper gymnasium and the existing lower gymnasium have been re-analyzed and it has been determined that neither has the proper ceiling height to meet requirements for regulation size, high school basketball and volleyball courts. If these spaces were to be reused, the roof structure would need to be raised to accommodate a performance gymnasium in the upper gym, and additional appropriate height spaces in the lower gym. These costs have been addressed in options 14A and 14B.

Revised Existing Conditions Structural Report

Refer to the revised Existing Conditions Final Structural Report dated June 14th, 2011 which provides additional information in regards to current and updated code compliance for the existing structure. Additional structural information is provided in the structural comments in section 7 of this report.

Environmental Site Assessment Report

Attached is the Phase I Preliminary Site Assessment relative to Oil and Hazardous Materials dated May 2011. CDW Consultants, Inc. (CDW) has conducted an investigation of the Concord Carlisle High School located at 500 Walden Street ("Site") in Concord, Massachusetts. The investigation consisted of a site reconnaissance, document research of the site to identify potential environmental concerns, an environmental database review, and interviews with local officials, the current site owner, and agency employees. This site investigation was conducted in April and May 2011 and concludes that there is no visible evidence of releases of oil or hazardous materials at the Site, but there is possible presence of contaminated subsurface conditions. Additional soil and groundwater sampling and analysis will need to be performed in the DD phase as part of a Phase II Subsurface Investigation.

Hazardous Materials Report

Attached is the Hazardous Material Summary Report dated May 13, 2011. CDW Consultants, Inc. (CDW) reports on the findings of the pre-renovation and/or demolition testing and hazardous materials survey of Concord-Carlisle High School ("Site") in the town of Concord, Massachusetts. The scope of work was to identify and quantify asbestos containing building materials (ACM), lead-based paint (LBP), mercury switches, transformers, light ballasts, fluorescent tubes, and other visible hazardous materials.

Their conclusions state that the material that will need to be removed during demolition, through hazardous materials procedures, includes: floor tile, mastic, pipe fittings and insulation, window glaze and caulk, door frame and column caulk, expansion joints, roofing materials, ceiling tile and glue, fire doors, stage curtain, fume hoods, vapor barrier and popcorn ceilings. PCBs were detected in caulk at levels below EPA PCB regulated wastes; however the substrates (brick, metal) need testing during later phases to ensure these do not contain PCBs at concentrations at or above 1 part per million EPA level for unrestricted use. Elevated levels of lead were detected in the green paint at the hall columns, thus a sample should be collected for Toxicity Characteristic Leaching Procedure (TCLP) to determine if there are any special hazardous waste disposal requirements. Furthermore, mercury is present at elevated concentrations in the gym floor and should be tested for TCLP to determine if there are special hazardous waste disposal requirements. For mercury, the EPA recommends, in schools, conducting baseline mercury vapor testing of the air to determine if mercury vapors are being released and at what concentrations. Additional air and TCLP sampling work will need to be performed on the green paint on the hall columns during the DD phase and PCB substrate sampling will need to happen during CA.

Geotechnical Report

Refer to the attached Preliminary Geotechnical Recommendations dated June 6, 2011 by Nobis Engineering. The proposed sites for option 6 and 12 were determined to be feasible locations for new construction. On June 8th two additional borings were drilled on the Option 13/14 site. The attached draft report dated June 16, 2011 from Nobis Engineering provides additional information regarding the conditions at the 13/14 site. Below is a summary describing these site conditions.

The proposed finished floor elevation (FFE) of Option 13/14 is approximately El. 170. The borings encountered 25' to 35' of medium dense sand, with a few 6" or less silty, clay layers. Below this was approximately 20' of hard, varved silt, clay and fine sand, and below that was sand. Groundwater was encountered at approximately El. 142. Soil above the FFE consisted of sand or sand and gravel. A final geotechnical report will be submitted to the MSBA upon completion.

Preferred Schematic Report

The advantages to this Option 13/14 site include:

- cuts 3' to 30' thick which will reduce the load on the clay as opposed to Option 12 which includes the need to bring in 12' of new fill, which would significantly increase the load on the clay,
- and, deeper clays, which reduce the increase of stress to that layer from the building loads.

This information has been and will continue to be used by the A/E team.

Site Survey

In May 2011, a topographic site survey was completed by Nitsch Engineering. The site information has been used to develop the preferred options. A site survey is attached at the end of this section.

Facilities Master Plan

<u>Building Conditions Analysis – Gymnasium</u> (Revised final report for Existing Gymnasium June 8, 2011)

Gymnasium

The performance gym has the existing curtain wall system with single pane glass and metal panels. The Building envelope is poorly insulated with a weak air barrier. The paint finish on the metal panels is peeling in many locations on the east wall. Fiberglass doors were installed at the east entry. The structure of the gym is exposed on the outside of the building causing thermal bridging, the exposed steel is beginning to rust and deteriorate in many locations. The roof is PVC and needs to be replaced.

Exterior entry to performance gym

Exposed performance gym structure & curtain wall

Deteriorating steel structure

Failing roof drains and thermal bridging of exposed structural steel

The performance gymnasium has two floor levels, the gymnasium and weight room are on the main level and the locker rooms are on the lower level. Corridors in upper gym have a mix of new and old VCT flooring. The corridor ceilings are exposed steel/Tectum deck and surface mounted strip fluorescent fixtures. The walls are existing brick and painted CMU. Wood doors and wood panels are worn in the gym and the wood floor has been sanded and refinished many times. The performance gym ceiling has exposed steel and Tectum deck; the walls are a combination of painted block and wood panels. The large folding partition in the gym appears to be in-operable. The locker rooms have exposed concrete floors and new lockers on original CMU plinths. There are original tile walls in shower area. The locker room walls are a mix of painted CMU

Concord-Carlisle High School

Facilities Master Plan

and glazed CMU; the ceilings are 12x12 perforated metal panels (stainless steel). Painted metal dividers at changing area with fixed wood benches. Corridors have exposed insulated piping, wiring, and mechanical ducts.

The ceiling height in the upper gymnasium is approximately 20'-8 ½" clear from the finish floor to the underside of the deck. A regulation size high school basketball court requires 25'-0" clear ceiling height and a regulation size high school volleyball court requires 23'-0" of clear ceiling height. The existing steel structure would need to be raised and/or reframed in order to provide the proper clearance in this space for a performance gymnasium.

Performance gym

Girls locker room showers

The building envelope for the lower gym is the existing 1970's split faced ribbed block. The building envelope system is poorly insulated and does not provide an air tight barrier. The window units are an aluminum storefront system with single pain glass. Fiberglass doors were installed at the east entry. The building has anodized aluminum fascias. The EPDM roof is in poor condition.

North and west wall at lower gym

Lower gym entry and ramp to performance gym

The lower gym has a worn and faded rubber floor, painted CMU walls, an applied acoustical ceiling with exposed steel trusses and pendant lights. There is a roll up curtain divider that appears to be functioning and batting cage nets that are hung from the roof structure.

Facilities Master Plan

Rubber floor in lower gym

Ramp down to lower gym

Storms during this past winter have uplifted the EPDM membrane off of the roof deck. It is believed that the heavy winds entered under the flashing at the openings in the fluted block and lifted the roof membrane. The school has mechanically fastened the membrane back down, but the wind is still able to get under the flashing

Strong winds have entered between fluted block and flashing and lifted the EPDM off of the roof

EPDM blistering and failing roofing adhesives.

The ceiling height in the lower gymnasium is 20'-0" clear from the finish floor to the underside of the steel joists. A regulation size high school basketball court requires 25'-0" clear ceiling height and a regulation size high school volleyball court requires 23'-0" of clear ceiling height. The existing steel structure would need to be raised and/or reframed in order to provide the proper clearance for a high school competition gymnasium. This space may be adequate as a practice gymnasium and a physical education space.

- + Wood floor appears to be in good shape in performance gym
- + Bleachers appear to be new in the performance gym
- +/- Most door hardware meets ADA/MAAB requirements
- +/- Rubber floor in the lower gym is durable but outdated
- +/- Boys'/girls' and men's / women's toilet rooms meet some ADA standards (not all clearances are code compliant)
- Door hardware to weight room does not meet ADA/MAAB regulations
- Threshold at weight room is not code compliant
- Many drinking fountains are not accessible; they project into corridors and do not meet cane detection clearances

omrarchitects

Concord-Carlisle High School

Facilities Master Plan

- Unappealing ceiling in lower gym
- Folding partition in the performance gym is broken
- Ramp down to lower gym and locker rooms do not meet ADA/MAAB requirements
- Boys locker room has gang showers
- Stair railings and guardrails do not meet building code regulations (in all four stairwells)
- Drinking fountains in stairwell (not compliant and not accessible)
- Steps up to locker room offices are not accessible
- Some doors do not have proper accessible maneuvering clearances and/or proper door widths
- Exterior single pain glass windows and existing exterior masonry envelope
- Water damage on existing masonry
- Paint peeling off of exterior metal panels, panels are not insulated
- Ponding on roof (PVC roof needs to be re-done)
- Exterior doors from lower gym are not accessible

2150 Washington Street Newton MA 02462

> T 617-527-9600 F 617.527.9606

> > offices in: Newton MA Manchester NH Atlanta GA

www.fbra.com

CONCORD CARLISLE REGIONAL HIGH SCHOOL

|FolevBuh|Roberts

& ASSOCIATES INC

Concord, MA

structural engineers

Final Existing Structural Conditions Report

June 14, 2011

INTRODUCTION

Foley Buhl Roberts & Associates, Inc. (FBRA) is collaborating with The Office of Michael Rosenfeld, Inc., Architects (OMR) to review and analyze structural conditions and issues at the Concord Carlisle Regional High School in Concord, MA. The purpose of this report is to identify and to describe the structural systems of the various sections of the school and to comment on the structural conditions/issues observed. General comments relating to potential renovations, alterations and additions to the facility are presented as well. A new edition of the Massachusetts State Building Code (780 CMR - 8th Edition) has been issued since the original report was completed in November, 2009; this final report includes comments relating to current code requirements.

Structural conditions at the Concord Carlisle Regional High School were observed at the site on November 9, 2009 and again on March 8, 2011.

The following documents were reviewed in the preparation of this Existing Conditions Structural Report:

- Structural Drawings S-1 to S-13, prepared by A. B. Onderdonk Consulting Engineer, • Glastonbury, CT, dated July 7, 1958 (Includes soil boring logs on Drawing S-1).
- Architectural Drawings A-1 to A-9, prepared by Warren H. Ashley, AIA Architect, West • Hartford, CT, dated August 31, 1964 (Science Building addition - Structural Drawings not available).
- Structural Drawings S-1 to S-10, prepared by Korslund, LeNormand & Quann, Inc. ٠ Architects and Engineers, Norwood, MA, dated October 11, 1973 (Includes soil boring logs on Drawing G-3).
- Concord Carlisle High School Existing Conditions Report (Structural Section), prepared by Symmes Maini & McKee Associates, Cambridge, MA, dated March 18, 2005.
- Preliminary Phase Geotechnical Studies, prepared by The Geotechnical Group, Inc., ٠ Needham, MA, dated June 20, 2005.

The November 14, 2000, Concord-Carlisle High School Space Utilization Study, prepared by HMFH Architects, Inc. was not reviewed, as this particular report did not address structural issues.

No exploratory demolition or structural materials testing was conducted in conjunction with this existing conditions review.

Concord, MA

Final Existing Structural Conditions Report June 14, 2011

I. <u>GENERAL</u>

The Concord Carlisle Regional High School is located at 500 Walden Street in Concord, MA. The school has an enrollment of over 1260 students. The total area of the complex is approximately 228, 550 gross square feet.

The original high school was constructed in 1960 and included a science building (S - Building), a humanities – administration building (H - Building), a theater arts building (A – Building (includes the Auditorium)), a dining building (Cafeteria) and a Gymnasium/Locker Room building. All buildings/wings are one-story, with the exception of the (1960) Gymnasium and the (1975) Library. There are (partial) basement Mechanical Rooms below the First Floor in the A – Building, the H – Building, the I – Building (originally constructed with the 1965 S – Building addition) and the Gymnasium. Sump pits have been provided in all basement Mechanical Rooms.

A one-story addition to the original science building was constructed in 1965.

In 1975, several new buildings/wings were added to the complex. The I – Building (Industrial Arts) was constructed to the south of the original S – Building. The L – Building (Language) was constructed on the north side of the S – Building. A multi-level Library structure with a lobby was also constructed, providing an internal connection between the A – Building and the Cafeteria. The Cafeteria was expanded (to the east) at this time as well. An additional Gymnasium (the Lower Gym) was constructed to the west of the original gym. All buildings/wings are interconnected by interior or exterior walkways/corridors. A significant portion of the buildings were re-clad during the 1980's, eliminating the areas of original, floor-to-ceiling glazing. Since that time, there have been repairs and renovations involving little or no structural work (1990 and 1992).

The First (Main) Floor elevation of the buildings varies, in some cases. Internal ramps and exterior connectors transition between buildings where the First Floor elevations do not align.

The original (1960) buildings and subsequent (1965 and 1975) additions are steel framed, as described below and as summarized in the 2005 Symmes Maini & McKee Associates report. Typical 1960 roof construction consists of manufactured, cementitious wood fiber (Tectum) roof decking with steel bulb tees (sub-purlins), supported by wide flange steel purlins spanning to steel beams that are supported by steel columns ("W", "T", "L" or Tube shape). The roof of the 1965 S – Building addition appears to be similarly framed (Structural Drawings not available). 1975 roof construction typically consists of $1\frac{1}{2}$ " deep steel roof deck spanning to open web steel joists. Steel joists are supported by steel beams and steel columns.

Second Floor construction at the (1975) Library is steel framed, with a concrete slab on open web steel bar joists, supported by steel beams and columns.

First (Main) Floor construction is typically a concrete slab on grade, except precast concrete plank was installed over MEP tunnels and basement Mechanical Rooms below the First Floor level. At the original Gymnasium building, the floor is structured with either precast plank (over the Mechanical Room) or a reinforced concrete slab supported by steel beams and columns (over the Locker Rooms).

Foundations at all buildings/wings are conventional spread footings.

Concord, MA

Final Existing Structural Conditions Report June 14, 2011

II. STRUCTURAL SYSTEMS DESCRIPTION

Structural Materials:

Original Construction – 1960:

Concrete is noted to be 2,500 psi typically, with 3,000 psi used at the Gymnasium Building (structural slab at the First Floor). Structural Steel specifications are not noted on the Structural Drawings; however, structural steel is likely ASTM A7, with a minimum yield strength of 33,000 psi.

1975 Additions:

Concrete is noted to be 3,000 psi, generally. Reinforcing bars are typically intermediate grade (40,000 psi). Structural Steel is noted to be ASTM A36, with a minimum yield strength of 36,000 psi.

Allowable Soil Bearing Pressure:

Original Construction – 1960:

Spread footings were proportioned for a maximum allowable bearing pressure of two (2) tons per square foot (tsf). Representative structural calculations generally confirm this design bearing pressure. The bottom of exterior footings is typically a minimum of 4 feet below finished grade.

1975 Additions:

Spread footings were proportioned for a maximum allowable bearing pressure of two (2) tons per square foot (tsf). Representative structural calculations generally confirm this design bearing pressure. The bottom of exterior footings is typically a minimum of 4 feet below finished grade.

Design Roof and Floor Loads:

Original Construction – 1960:

Roof construction has typically been designed for a 40 psf live (snow) load. Representative structural calculations generally confirm this design load. The current building code would require that flat roofs be designed for a minimum snow load of 42.4 psf (based on a ground snow load of 55 psf in Concord). It does not appear that low roofs adjacent to higher roofs (e.g. surrounding the Auditorium) have been designed for increased loading due to snow drifting. These areas will need to be evaluated and reinforced (as appropriate) in conjunction with future renovations to the facility.

The design live loads for framed floor construction (over MEP tunnels and the First Floor of the Gymnasium Building) are not noted on the Structural Drawings. The determination of design live loads for framed floor construction is beyond the scope of this report.

1975 Additions:

Roof construction has typically been designed for a 40 psf live (snow) load. Representative structural calculations generally confirm this design load. The current building code would require that flat roofs be designed for a minimum snow load of 42.4 psf (based on a ground snow load of 55 psf in Concord). It appears that low roofs adjacent to higher roofs (e.g. between the original and lower Gymnasiums) have been designed for increased loading due to snow drifting. Original low roof areas adjacent to the higher, 1975 Library construction were reinforced when the Library was built.

Concord, MA

Final Existing Structural Conditions Report

June 14, 2011

The design live loads are noted to be 50 psf at typical classrooms and laboratories, with a 100 psf live load at corridors and storerooms and 150 psf at the Library. With the exception of the Library Second Floor, most floor areas are slab on grade construction.

Roof Construction:

Original Construction – 1960:

Roof construction of the S – Building consists of a $2\frac{1}{2}$ " thick, manufactured cementitious wood fiber (Tectum) decking supported by steel bulb tees. Steel bulb tees are typically spaced at 2'-8" o.c. and span to wide flange steel purlins. Interior columns (typically 5" WF) are generally arranged in a double-loaded corridor fashion, with 28'-2", 10'-10" (corridor) and 32'-6" typical spans. Perimeter columns/mullions (typically structural tees) are spaced at 6'-6" o.c. and are integrated with the exterior wall construction. The top of steel is $10'-4\frac{1}{2}$ " above the floor. Roof construction at the 1965 addition to this building is likely similar.

Roof Construction at the H – Building is similar, with typical purlin spans of 26'-0" and beam spans varying across the width of the building. Interior columns are typically square tubes. Perimeter columns/mullions (typically structural tees) are spaced at 6'-6" o.c. and are integrated with the exterior wall construction. The top of steel is $10'-4\frac{1}{2}$ " above the floor.

The roof of the Gymnasium is suspended from six (6), external, 36" deep wide flange steel rigid frames, clear spanning the space (approximately 106 feet). The frames are spaced at 21'-1½" on centers. The roof is suspended from the frames by $3\frac{1}{2}$ " diameter steel pipes and consists of a $2\frac{1}{2}$ " deep Tectum deck with steel bulb tees, typically spanning 9'-9" to the suspended steel beams. Perimeter columns/mullions (typically structural tees) are spaced at 6'-6" o.c. and are integrated with the exterior wall construction. The top of steel beam is approximately 21'-10" above the floor.

Roof construction at the Cafeteria is similar, Tectum deck/steel bulb tee construction, spanning to wide flange steel purlins. Purlins typically span 19'-6" and are supported by 27" deep, wide flange steel rigid frames. Steel frames clear span the space, approximately 79 feet. Perimeter columns/mullions (typically structural tees) are spaced at 6'-6" o.c. and are integrated with the exterior wall construction. The top of steel is 10'-4½" above the floor.

The roof of the A – Building is also constructed with Tectum decking and steel bulb tees. At the high roof, bulb tees span $6\frac{1}{2}$ +/- feet to 52 inch deep longspan steel joists, which clear span the space. At the lower, surrounding roofs, Tectum Deck/steel bulb tee construction is supported by wide flange steel purlins and beams. Perimeter columns/mullions (typically structural tees) are spaced at 6'-6" o.c. and are integrated with the exterior wall construction. The top of low roof steel is approximately 13 feet above the floor; the top of high roof steel is approximately 9'-4 $\frac{1}{2}$ " higher.

1975 Additions:

1975 roof construction typically consists of a $1\frac{1}{2}$ " steel deck spanning to open web steel joists. Steel joists are supported by steel beams and steel columns.

At the L – Building, steel roof deck typically spans approximately 5 feet, to 20" deep, open web steel joists. Steel joists typically span 33'-6" and are supported by wide flange steel beams (14" to 21" deep). Interior and perimeter columns are typically 6" wide flange sections. Roof steel pitches to provide drainage; the high point is approximately $12'-10\frac{1}{2}$ " above the floor.

Roof construction at the I – Building is similar, with 14" or 16" deep steel joists spanning approximately 19 to 25 feet to wide flange steel beams (14" to 18" deep). Interior and perimeter columns are typically 6" wide flange sections. Roof steel pitches to provide drainage; the high point is approximately 13'-10¹/₂" above the floor.

Concord, MA

Final Existing Structural Conditions Report

June 14, 2011

At the Library, steel roof deck typically spans approximately 5 feet to 16" deep, open web steel joists. Steel joists typically span 26 feet and are supported by wide flange steel beams (16" to 18" deep). Beam spans vary from 25'-9" to 32'-6". Interior and perimeter columns are typically 8" square tube and 8" wide flange sections, respectively. Roof steel pitches to provide drainage; the high point is approximately 13'-10½" above the Second Floor.

The roof of the Lower Gymnasium is framed with steel roof deck spanning 6'-6" to 48 inch deep, long span open web steel bar joists. Steel joists clear span the space (approximately 92'-5") and are supported by W21 inch deep, wide flange steel beams. Steel beams span 19'-6" to $21'-6\frac{1}{2}"$ and are supported by wide flange steel columns.

The expanded Cafeteria roof matches the original roof construction, as described above.

Second Floor/Mezzanine Floor Construction:

1975 Additions:

The Second Floor of the Library is framed with a 3" concrete slab, on 26 gauge steel form deck, spanning 2'-0" to 16" or 18" deep open web steel bar joists. The joists typically span 26 feet and are supported by 24" deep, wide flange steel beams and square tubular steel columns. The top of steel beam is 11'-61/2" above the First Floor. The design live load is 150 psf.

A small Mezzanine Floor (600+/- square feet) was constructed in the I – Building. Floor construction consists of a $5\frac{1}{2}$ " thick, one-way reinforced concrete slab spanning 11+/- feet to masonry bearing walls. The top of slab is approximately 7'-6" above the First Floor.

Typical First (Main) Floor Construction:

Original Construction - 1960:

Typical First Floor construction for all buildings (except at the Gymnasium) consists of a 4" thick, concrete slab on grade, reinforced with welded wire fabric.

First Floor construction over the various MEP tunnels consists of a 2" concrete topping slab on 6" thick, precast, prestressed concrete (Dox) plank. Tunnels are typically 5'-8" deep, with a 4" concrete slab on grade floor. Floor construction over the basement Mechanical Rooms in the A – Building, the H – Building and the Gymnasium is similar, with 8" thick precast plank.

At the east side of the Gymnasium, 8" thick Dox planks, with a 2" concrete topping slab spans 21+/- feet over the Mechanical Room below. The Gymnasium floor is framed with a one-way, reinforced concrete slab (5" to 7½" thick) typically supported by 12" deep wide flange steel beams.

1975 Additions:

Typical First Floor construction for all buildings (including the Lower Gymnasium) consists of a concrete slab on grade, reinforced with welded wire fabric. The slab thickness is 4" at the L - Building and at the northern half of the I – Building. Elsewhere, the slab is 5" thick. First Floor construction at the Library is split between a high and low level, with concrete retaining walls retaining soil at the changes in elevation.

Typical Basement Floor Construction:

Original Construction – 1960:

Typical Basement Floor construction in the Mechanical Rooms consists of a 6" thick concrete slab on grade, reinforced with welded wire fabric. The Locker Room floor is a 4" thick slab.

Concord, MA

Final Existing Structural Conditions Report

June 14, 2011

Expansion Joints:

Original Construction – 1960:

Internal expansion joints were provided in the S – Building, The H – Building and the A – Building to reduce the overall length of the structural steel frame. The joints are typically 1" or 2" in width.

1975 Additions:

No internal expansion joints were provided in the 1975 Buildings; however, each building is separated from the original construction by an expansion joint (typically 1").

Foundations:

Original Construction – 1960:

Foundations for all buildings are typically continuous strip footings at the perimeter and basement foundation walls and individual spread footings at interior column supports. As noted above, footings at all buildings have been proportioned on the basis of a 2+/- tsf allowable bearing capacity. Typical foundation walls are 10" thick, but wall thicknesses vary from 8" (tunnel walls) to 16" (Mechanical Room walls at the Gymnasium).

1975 Additions:

Foundations for all buildings are typically continuous strip footings at the perimeter and basement foundation walls and individual spread footings at interior column supports. As noted above, footings at all buildings have been proportioned on the basis of a 2+/- tsf allowable bearing capacity. Typical foundation walls are 10" thick, but wall thicknesses vary from 8" to 16".

Drainage:

It does not appear that perimeter foundation drains or underslab drainage was provided for any of the original buildings or the 1965 and 1975 additions. Further review is required to determine if any drainage provisions were made. Facilities personnel report that there are no groundwater issues in the basements or in other areas.

Exterior Wall Construction:

Original Construction – 1960:

Original exterior wall construction was brick veneer with an unreinforced masonry backup, or floor to ceiling glazing. Most of the 1960 facades were removed and replaced in the 1980's, with brick veneer cavity wall construction and new window units. Control joints and weep holes were provided. Additional details of the 1980's wall construction are not known.

1975 Additions:

Exterior wall construction typically consists of a 4" split face block veneer with a pumice block backup. An insulated cavity was provided. Control joints and weep holes are present in this construction.

Fire Resistance:

Steel framing at the original buildings and at the 1965 and 1975 additions is typically unprotected and has no fire resistance rating. The construction is classified as Type 2B, Non-Combustible, Unprotected.

Sprinklers have been installed in the H – Building only.

Concord, MA

Final Existing Structural Conditions Report

June 14, 2011

Fire rating issues will need to be evaluated in conjunction with potential, future additions and/or renovations to the complex. Fire protection of the existing floor and roof construction and/or the introduction of new building joints with fire walls may be required to meet current code requirements.

Lateral Load Resistance:

Original Construction – 1960:

The means by which lateral (wind and seismic) forces are resisted is not defined on the original (1958) structural drawings (typical for buildings of this era). However, the non load bearing masonry walls (at the building perimeter, at corridors and between classrooms, etc.) serve as shear walls and provide a degree of lateral force resistance. Rigid steel frames at the Cafeteria and the Gymnasium provide lateral stability in the direction of the frame spans.

1975 Additions:

The 1975 additions were also designed prior to the introduction of seismic codes; however, (per the Structural Drawings) these buildings were designed for a 20 psf wind load. The lateral (wind) force resisting system is not clearly defined on the Structural Drawings; it is expected that interior and perimeter (unreinforced) masonry walls serve as lateral load resisting shear walls.

III. SUBSURFACE SOILS/FOUNDATION CONSIDERATIONS

Boring logs were included on the 1958 and 1973 Structural Drawings. Four (4) additional borings (shallow depth) were taken by The Geotechnical Group in June, 2005. Subsurface conditions generally consist of loose to medium dense natural sands. Groundwater was encountered at the northern end of the site at a relatively shallow depth in two of the 2005 borings (approximately 5 feet below the existing ground surface). Based on their (limited) exploration/evaluation of the site, The Geotechnical Group concluded that the potential for liquefaction of the subsurface soils during a seismic event may be present (potentially affecting foundation design and construction for all options).

Additional borings were taken at the site by Nobis Engineering during the weeks of May 9, 2011 (four borings) and June 6, 2011 (two borings). A preliminary Geotechnical Report was issued on June 6, 2011. It was determined that the soils at the site are not susceptible to liquefaction. The site has been classified as Site Class D. Foundations can be conventional spread footings, proportioned on the basis of a 2 tons per square foot allowable bearing pressure. Perimeter and underslab drainage is generally not required; however a perimeter drain should be provided behind foundation walls at below grade spaces. Lowest level floors can be slab on grade construction.

Compressible, varved silts and clays were encountered at the western part of the site (May 2011 borings). New construction at this part of the site (particularly those options which would require additional fill) will experience additional, long term settlement, due to the presence of this compressible layer. Preloading of the site (4 to 6 month duration) would be required to mitigate long term settlements. A hard, varved clay and silt layer was encountered in the more recent (June 2011) borings to the south of the existing facility. New construction in this location would require cuts into the existing hillside (no fill), which would reduce the load on the clay/silt layer and decrease the potential for additional long term settlements.

Concord, MA

Final Existing Structural Conditions Report

June 14, 2011

IV. STRUCTURAL CONDITION/COMMENTS

Structural conditions at the Concord Carlisle Regional High School were reviewed (to the extent possible) during a visit to the site on November 9, 2009 and again on March 8, 2011. Floor and roof construction was obscured by finishes (hard ceilings) and could not be viewed in a number of areas. However, the roof and floor construction of the original building and the subsequent (1965 and 1975) additions generally appears to be in satisfactory condition. Foundations appear to be performing adequately; there is no evidence of excessive, total or differential settlements. Essentially, there has been no significant change in the condition and/or the performance of the superstructure and the foundations over the past 16 months. There was no visible evidence that the roof structure had been compromised by the relatively heavy snow loads of January and February of 2011.

It appears that the buildings were constructed in general accordance with the original Structural Drawings.

Facilities personnel continue to report that there are no structural problems/concerns and that there are no groundwater related issues in any of the buildings. There is evidence of moisture in the basement Mechanical Rooms; however it is not clear if this is related to equipment/piping or groundwater. Sump pumps have been provided, which presumably control peak groundwater levels.

Several areas of the slab on grade have settled over time. At the northwest corner of the S – Building, settlement was observed in the floor of the 1965 Chemistry Lab/Classroom. A similar condition was observed at the interface of the original S – Building and the 1975 I – Building. In each case, the settlement observed is likely related to inadequate soil material and/or compaction against the original S – Building foundation wall, prior to placing the new slab. There are no structural concerns related to this condition.

Existing roofs are adhered membrane and are in need of replacement, according to Facilities personnel.

Exterior wall construction generally appears to be in satisfactory construction. Areas of the original (1960) wall construction still remain – the condition of these walls was not determined.

Additional structural/structurally related conditions that should be reviewed and evaluated during Schematic Design and the subsequent design phases include the following (all buildings, unless otherwise noted):

- Floor Live Loads: Additional structural calculations should be run to confirm the live load capacity of the structured floor in various areas of the complex. Based on our preliminary calculations, however, if the proposed use(s) of the buildings remain essentially the same throughout, floor live load capacity is not expected to be an issue.
- 2. Snow Load: Roof design loads are typically 40 psf (confirmed by representative structural calculations). The Eighth Edition of the Massachusetts State Building Code (780 CMR) currently requires that flat roof construction for new structures in Concord be designed for a 42.4 psf minimum snow load (plus drifting snow), based on a 55 psf Ground Snow Load (P_g). It does not appear that low roof areas surrounding the higher, Auditorium roof were designed for drifting snow. This issue will need to be evaluated and addressed in conjunction with future renovations to this building. Local reinforcing at potential snow drift areas will likely be required. Future additions (if planned) should be located and massed in a manner to minimize/avoid drifting snow on the existing roof construction.
- 3. As previously noted, fire resistance rating issues will need to be evaluated with respect to proposed, future renovations and/or additions to the complex.

Concord, MA

Final Existing Structural Conditions Report June 14, 2011

V. RENOVATIONS AND ADDITIONS – MASSACHUSETS EXISTING BUILDING CODE

General comments relating to potential renovations, alterations and additions to the Concord Carlisle High School are presented in this section. Renovations, alterations, repairs and additions to existing buildings in Massachusetts are governed by the provisions of the Massachusetts State Building Code (MSBC - 8th Edition) and the Massachusetts Existing Building Code (MEBC). These documents are based on amended versions of the 2009 International Building Code (IBC) and the 2009 International Existing Building Code (IEBC), respectively.

The MEBC defines three (3) compliance methods for the repair, alteration, change of occupancy, addition or relocation of an existing building. The method of compliance is chosen by the Design Team (based on the project scope and cost considerations) and cannot be combined with other methods.

The Prescriptive Compliance Method (IEBC Chapter 3) duplicates Sections 3403 through 3411 of Chapter 34 in the IBC and prescribes specific minimum requirements for construction related to additions, alterations, repairs, fire escapes, glass replacement, change of occupancy, historic buildings, moved buildings and accessibility. A complete structural evaluation of the building is not required, if the impact of the proposed alterations and additions to structural elements carrying gravity loads and lateral loads is minimal (less than 5% and 10% respectively). Seismic upgrades to the existing building are generally not required. An exception is buildings with unreinforced masonry (URM) walls (applicable to Concord-Carlisle High School). Buildings with unreinforced masonry walls are required to be evaluated with respect to the provisions of Appendix A1 of the IEBC (applies to all compliance methods). An assessment of masonry shear stresses, wall slenderness, parapets, wall anchorage, etc. is required; and the existing building must be capable of resisting at least 75% of the seismic loading required by the code for new construction.

The Work Area Compliance Method (IEBC Chapters 4 through 12) is based on a proportional approach to compliance, where upgrades to an existing building are triggered by the type and extent of work. The Work Area Compliance Method includes requirements for three levels of alterations, in addition to requirements for repairs, changes in occupancy, additions, historic buildings or moved buildings. A complete seismic evaluation of the existing building is required for the following: Level 2 alterations where the demand to capacity ratio of lateral load resisting elements has been increased by more than 10%, all Level 3 alterations, a change in occupancy to a higher category and where structurally attached additions (vertical or horizontal) are planned.

The Performance Compliance Method (IEBC Chapter13) duplicates Section 3412 of Chapter 34 in the IBC and provides for evaluating a building based on fire safety, means of egress and general safety (19 parameters total). This method allows for the evaluation of the existing building to demonstrate that proposed alterations, while not meeting new construction requirements, will maintain existing conditions to at their current levels (at a minimum) or improve conditions, as required. A structural investigation and analysis of the existing building is required to determine the adequacy of the structural systems for the proposed alteration, addition or change of occupancy. A report of the investigation and evaluation, along with proposed compliance alternatives must be submitted to the code official for approval.

Concord, MA

Final Existing Structural Conditions Report

June 14, 2011

Additions:

The design and construction of proposed additions will be in accordance with the code for new construction. Additions should be structurally separated from the existing building by an expansion (seismic) joint to avoid an increase in gravity load or lateral loads to existing structural elements.

Renovations/Alterations:

Where proposed alterations to existing structural elements carrying gravity loads result in a stress increase of over 5%, the affected element will need to be reinforced or replaced to comply with the code for new construction. Proposed alterations to existing structural elements carrying lateral load which result in an increase in the demand - capacity ration of over 10% should be avoided, if possible; otherwise, a complete lateral load evaluation and seismic upgrades/reinforcing will be required. Essentially, this means that the removal or major alterations to the existing, unreinforced masonry bearing/shear walls at the facility should be minimized.

END OF FINAL EXISTING STRUCTURAL CONDITIONS REPORT

Concord-Carlisle HS - Existing Structural Conditions Report_06.14.11 - Final.doc

CDW CONSULTANTS, INC.

CIVIL & ENVIRONMENTAL ENGINEERS

PRINCIPALS AND ASSOCIATE Yee Cho, P.E., L.S.P. Kathleen Campbell, P.E., L.S.P., LEED, AP John Goodhall, P.E.

PHASE I PRELIMINARY SITE ASSESSMENT RELATIVE TO OIL AND HAZARDOUS MATERIALS

Concord Carlisle High School 500 Walden Street Concord, MA

May 2011

Prepared for:

Mr. Marty Kretsch, LEED AP Office of Michael Rosenfeld, Inc. 543 Massachusetts Avenue West Acton, MA 01720

CDW Project #1234

TABLE OF CONTENTS

I. PH	I. PRELIMINARY PHASE I SITE ASSESSMENT SUMMARY 1					
1.(C	General Site Conditions				
	1.1	Location and Site Description1				
2.0	C	Additional Site and Surrounding Area Information				
	2.1	Massachusetts GIS Data 4				
	2.2	Physical Setting				
3.0	C	Site and Surrounding Area History				
4.(C	Records Review				
	4.1	Registered Underground Storage Tank (UST)7				
	4.2	Massachusetts SHWS List				
	4.3	Massachusetts Leaking Underground Storage Tanks (LUST)				
	4.4	Massachusetts Leaking Aboveground Storage Tanks (LAST)				
	4.5	RCRA Hazardous Waste Generators List				
	4.6	Massachusetts Solid Waste Facilities (SWF) List				
	4.7	U.S. EPA Brownfield Lists				
	4.8	National Priority List (NPL)				
	4.9	CERCLA Sites				
	4.10	Other Databases				
	4.11	Fire Department Records				
	4.12	Building Department Records 10				
	4.13	Water and Sewer Department Records 11				
	4.14	Planning Division and Historical Commission11				
II. FINDINGS AND RECOMMENDATIONS						
III.	III. LIMITATIONS					
IV.	IV. REFERENCES					

Concord Carlisle High School Concord, MA CDW Project #1234

APPENDICES

APPENDIX A:	FIGURES
Figure 1:	Site Location Map
Figure 2:	Assessor's Map
Figure 3:	Hydrography Map
Figure 4:	Open Space Map
Figure 5:	Natural Heritage Atlas Map
Figure 6:	Resource Areas Map
Figure 7:	FEMA FIRM Map
APPENDIX B:	AERIAL PHOTOGRAPHS
APPENDIX C:	ENVIRONMENTAL DATABASE REPORT EXECUTIVE SUMMARY
APPENDIX D:	CONCORD FIRE DEPARTMENT RECORDS
APPENDIX E:	EXCERPTS FROM HISTORICAL REPORT: "History of the Concord-Carlisle Regional High School Woods" - 2007

I. PRELIMINARY PHASE I SITE ASSESSMENT SUMMARY

CDW Consultants, Inc. (CDW) has conducted an investigation of the Concord Carlisle High School located at 500 Walden Street ("Site") in Concord, Massachusetts. The investigation consisted of a Site reconnaissance, document research of the Site to identify potential environmental concerns, an environmental database review and interviews with local officials, the current Site owner, and agency employees. This Site investigation was conducted in April and May, 2011.

1.0 General Site Conditions

1.1 Location and Site Description

The subject Site is located at 500 Walden Street, Concord, Massachusetts and consists of the Concord-Carlisle High School. Additional facilities, the Beede Swim and Fitness Center and school bus transportation facility, are also within the campus but are outside of the scope of this assessment. The campus is comprised of a parcel of land that totals approximately 94 acres and is located on the Town of Concord Assessor's Map 11H, Block 298. The campus is located on the United States Geological Survey (USGS) Concord, MA (1987) Quadrangle Map (Refer to Figure 1 in Appendix A for the Locus Map) at approximate UTM coordinates 307325.4 mN, 4702042.0 mE and latitude 42° 265' 55.3'' N, longitude 71° 20' 34.4'' W. Figure 2 in Appendix A is an Assessor's map showing the property limits.

On April 21, 2011, CDW performed a Site reconnaissance to observe the interior of the existing building, general surficial condition of the Site, and documented existing and observable land uses of the Site and adjacent properties. The interior inspection was conducted in the presence of custodian Chris Johnson. Mr. Steve Wall, Building Supervisor, was also interviewed.

1.2 Interior Building Inspection

The Concord-Carlisle Regional High School is a one and two story brick and concrete flat roof structure that was build in 1959. The gymnasium, auditorium, and library are located in the two story section of the building.

The high school services students grades 9-12, and houses classrooms, offices, bathrooms, storage closets, custodian closets, boiler room, mechanical room, gymnasium, auditorium, library, cafeteria, kitchen, and maintenance department. Laboratory chemicals for the science classrooms were observed in a locked central storage room. A flammable storage cabinet and an acid storage cabinet were also observed in the storage room. The visual arts classrooms (including photography and ceramics) and the woodworking classroom were not accessible. Potential hazardous materials associated with those subjects, such as film developing chemicals, ceramic glazes, paints, etc., may be stored in those classrooms. The bathrooms have floor drains that discharge to the sewer system. The custodial rooms have small quantities of cleaning products.

Mr. Steve Wall provided access to the kitchen for observation. There are two walk in freezers and one walk in refrigerator, as well as floor drains and a grease trap that discharge to the sewer system. Mr. Wall stated that the school is hooked up to public water and public sewer. The grease traps are regularly cleaned, however he did not indicate when the last cleaning occurred.

The maintenance department has a concrete floor and exterior bay door to allow for vehicle and landscaping equipment access and maintenance. Small quantities of automotive chemicals and lubricants are stored on shelves and a 5 gallon gasoline container is stored on the floor. The concrete floor has minor cracking and oil stains. No floor drains were observed.

The boiler room located near the gymnasium is below grade and has a concrete floor. Two natural gas fired boilers, one air compressor, air handling units for the HVAC system, two wall mounted and one floor mounted dry transformers, and electrical panels were observed. The concrete floor was in relatively good condition, with no observable cracks. Two floor drains were observed with no liquid and appear to be plugged. There were minor oil stains and oil absorbent material observed under the air compressor.

The mechanical room located in the math/science wing is below grade and has a concrete floor, which is in good condition with no observable cracks. Two sumps, an air handling unit, dry transformer, one floor drain, and crawl space pipe chase were observed. One sump contained water, with no oily sheen observed. The second sump was no longer in use, dry, and had no oil staining. The floor drain was dry and no staining was observed around the drain. Access to a crawl space with a dirt floor was observed that contained piping.

The mechanical room located near the auditorium is below grade and has a concrete floor, which is in good condition with no observable cracks. A chiller unit, compressor, sump, and two floor drains were observed. The floor drains were dry and appear to be plugged. The sump contained water of which no oily sheen was observed. Minor oil stains on the concrete floor were observed underneath the compressor.

Mr. Johnson had no information on the discharge locations of the floor drains in the boiler room and mechanical rooms.

1.3 Exterior Building Inspection

The parcel of land that the Site is located within is bounded by wetlands and residential housing on the northeast, by residential housing on the southeast, by State Highway Route 2 and an active railroad operated by MBCR on the southwest, and by a wooded area and residential housing on the northwest. The Site is accessed by two paved driveways that connect to Walden Street and Thoreau Street. Stormwater catch basins were observed in these driveways.

Improvements to the Site include the high school building, two temporary buildings that house classrooms, grassed landscaped areas, asphalt paved access roads and parking lots. Outside of the subject Site and scope of this assessment are the Beede Swim and Fitness facility, school bus transportation facility, athletic fields, tennis courts, and wooded areas.

A paved loop drive is located in front of the main entrance to the building with a grassed area within the loop. There is also a paved access road that encircles the school building. Stormwater catch basins were observed in these access roads.

To the west and down slope of the school building are the school athletic fields, with a paved access road leading to the fields. To the south of the building are steep grassed slopes and beyond are tennis courts and a wooded area. Stemming south from the access road that encircles the school building is a paved access road to the recreational turf field parking lot and a paved access road leading to the school bus transportation facility. Both are up slope of the school building.

In front of bay doors on the southern side of the building is a concrete pad. Mr. Wall stated that a waste oil UST was removed from this location in 1998. No fill port or staining was observed to suggest that there is a UST currently being used. Additional information regarding USTs for the Site is found in Section 4.0. To the east of the building is asphalt paved parking.

There are three courtyards, two partially and one fully surrounded by the building. The fully surrounded courtyard has a man-made pond and shed that is used as a teaching tool. The other courtyards have grassed landscaped areas, walk ways and benches. Catch basins were observed in these courtyards.

Two back up generators, with sub-base diesel storage tanks, on concrete pads were observed; one outside of the cable television room and the other outside of the computer room. Both are surrounded by a chain link fence. No rust or staining was observed on the surface of the generators and there was no distressed vegetation surrounding the generators. The natural gas meter was observed on the southeast side of the building. A solid waste trash dumpster and recycling carts were located on a paved area at the southern side of the building. No evidence of inappropriate dumping was observed.

There was no evidence of suspect waste disposal pits or areas of oil staining observed during the Site inspection. Additionally, there were no areas of disturbed soil or distressed vegetation, or monitoring wells observed on the exterior of the Site.

2.0 Additional Site and Surrounding Area Information

2.1 Massachusetts GIS Data

The following is additional research pertaining to the Site that was conducted using the Massachusetts Geographical Information System (MassGIS) online data viewer.

<u>Hydrography</u>

According to the MADEP Wetlands and USGS data layers, there are wetlands present immediately adjacent to the north side of the athletic fields. There are wetlands located across Walden Street, to the east of the subject parcel. Located with a ½ mile of the Site is Fairy Land Pond to the east and Walden Pond to the south. (Figure 3 in Appendix A).

Open Space

The MassGIS open space data layer shows that a portion of the Site is open space that is owned by the Town of Concord for recreation and has a limited level of protection. Additionally, there are four parcels of open space adjacent to the Site, located to the east, north, west, and south (Figure 4 in Appendix A). The following parcels are:

Name	Owner	Purpose	Level of Protection
Hapgood Wright Forest	Municipal	Conservation	In Perpetuity
Emerson Playground	Municipal	Recreation	None
Arena Farmland	Municipal	Conservation	In Perpetuity
Walden Pond State Reservation	State	Conservation	In Perpetuity

Natural Heritage Atlas

A review of the 13th Edition of the Massachusetts Natural Heritage Atlas data layer shows that there is a Priority Habitat of Rare Species within a one-half mile south of the Site. There are no Areas of Critical Environmental Concern (ACECs) at the Site or within a one-half mile radius of the Site. (Figure 5 Appendix A).

Resource Areas

The MassGIS regulated areas data layers (Figure 6 Appendix A) show that within a one-half mile radius of the Site there is a MADEP Permitted Solid Waste Facility to southeast; there are three Certified Vernal Pools, one to the east and two to the south; and public water supply groundwater wells to the north. Additionally, the Site does lie within an area classified as a medium yield aquifer and Public Water Supply Protection Area Zone II. There are no Massachusetts Contingency Plan (MCP or Chapter 21E) sites within the one-half mile radius.

2.2 Physical Setting

According to the USGS Topographic Map, the Site is located at an elevation of 154 feet mean vertical datum. The entire Site is steeply sloped. The groundwater flow direction is estimated to be towards the north but could also be influenced by local wetlands and water bodies.

According to the Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map (Panel 25017C0378E), the Site is located within a Zone X, which is classified as an area outside of the 0.2% annual chance floodplain (Figure 7 Appendix A).

CDW did not perform any subsurface investigations as part of this Preliminary Phase I. According to the U.S. Department of Agriculture's (USDA) Soil Conservation Service (SCS), the Site soil component is predominantly Urban Land (Udorthents), which may include very deep, nearly level to moderately steep, loamy and sandy soils that have been altered. The surrounding soil types are steeply sloped sandy-loam or loamy-sand soils and include Hinckley loamy sand (15-25% slopes), Windsor loamy sand (3-8% and 8-15% slopes), and Merrimac fine sandy loam (3-8% slopes).

CDW reviewed the Bedrock Geologic Map of Massachusetts (Zen, 1983). The bedrock beneath the Site is "SOagr" that is part of the Avalon Belt, which consists of muscovite-biotite granite.

The storm water on the site collects in catch basins. According to Mr. Steven Ventresca of Nitsche Engineering, there are two storm drain systems on the Site. One storm drain system is located along the access road off Walden Street and discharges directly to an outfall in the wetland across Walden Street. The other storm drain system is located along the access road off Thoreau Street and discharges directly to an outfall on Town property across Thoreau Street.

3.0 <u>Site and Surrounding Area History</u>

CDW reviewed available aerial photographs and records at local and state agencies and the local historic archives, and conducted interviews for information regarding historical uses of the Site and surrounding area.

According to the Concord Assessor's Department, the current owner of the Site is the Town of Concord. The school building was built in 1959. There is no Sanborn Fire Insurance Map for this Site.

CDW reviewed aerial photographs of the Site and surrounding area dated 1938, 1952, 1960, 1969, 1978, 1980, 1985, 1995 and 2006. The 1938 aerial photograph of the Site shows an access road leading to disturbed areas. To the north of the Site is agricultural land and to the west wooded areas to the south and east. The 1952 aerial photograph of the Site shows that area of disturbance increased. The 1960 aerial photograph shows the newly constructed high school building and athletic fields. From the 1960s through to 2006, the aerial photographs show single family homes constructed on the once agricultural land to the north and west of the Site. The wooded areas to the south and east continued to remain undeveloped and are now protected open space. The 1952, 1969, 1980 and 2006 aerials are provided in Appendix B.

CDW reviewed historic maps that are archived at the Concord Free Public Library. An 1830 map of Concord depicts the Site as wooded hills with only one house to the east. An 1852 map of Concord depicts the Site as woodland and the newly constructed Fitchburg Railroad. The 1942 Planning Board map of Concord shows the newly constructed State Highway Route 2 to the south of the Site.

CDW interviewed Ms. Leslie Wilson, Curator of the Concord Free Public Library Special Collections, regarding the history of the Site. Ms. Wilson provided oral history of the possible historic uses of the Site. According to Ms. Wilson, a gravel pit occupied the site during the 1920s. Additionally she stated that the town dump was also located on this property. She provided a photo dated 1936 of the intersection of Walden and Thoreau Streets that included the "old town dump" in the caption of the photo.

4.0 <u>Records Review</u>

CDW reviewed records from various local and state offices, and obtained an environmental database report from Environmental Data Resources, Inc. (EDR) for information pertaining to the Site and the surrounding area. The Site is listed on the FINDS and MANIFEST databases. The Site is not listed as a leaking underground storage tank (LUST) site, RELEASE site (MA Release Tracking Database), and SHWS site (database of releases of oil and hazardous materials to MA DEP) as a federal National Priority List (NPL), Comprehensive Environmental Response, Compensation and Liability Information System (CERCLIS) site, Resource Conservation and Recovery Act (RCRA) corrective action report, large or small quantity generator or transporter. Also the Site is not listed as a Federal Emergency Response Notification System (ERNS) site, or above ground storage tank (AST) site. The EDR Report Executive Summary is provided in Appendix C. A summary of the information follows.

4.1 Registered Underground Storage Tank (UST)

CDW reviewed the state database for registered USTs. According to the MassDEP database (as of April 2011), there are no currently registered USTs on the Site, however there was one (1) registered UST located at the Site that was removed in 1998. The UST was a 275 gallon steel tank that contained waste oil.

4.2 Massachusetts SHWS List

CDW reviewed the SHWS database published by the MassDEP (April 2011), which contains information on releases of oil and hazardous materials that have been reported to the MassDEP. According to the MassDEP, there are no State Listed Reportable Releases on the Site or within a $\frac{1}{2}$ mile of the Site.

4.3 Massachusetts Leaking Underground Storage Tanks (LUST)

CDW reviewed this database published by the DEP (April 2011) that document releases with one or more underground storage tank(s) as the source of contamination. The subject Site is not listed as a LUST and there are no LUST sites within a ¹/₂ mile of the Site.

4.4 Massachusetts Leaking Aboveground Storage Tanks (LAST)

CDW reviewed this database published by the DEP (April 2011) that document releases with one or more above ground storage tank(s) as the source of contamination. The subject Site is not listed as a LAST and there are no LAST sites within a ¹/₂ mile of the Site.

4.5 RCRA Hazardous Waste Generators List

The subject site is not listed as a Resource Conservation and Recovery Act (RCRA) Generator. There are no RCRA generators located within one mile of the Site.

4.6 Massachusetts Solid Waste Facilities (SWF) List

CDW reviewed this database published by the DEP (April 2011) which indicated that there is one (1) solid waste facility currently located within $\frac{1}{2}$ mile of the Site. The land fill is closed with required monitoring. The land fill operated from 1959 – 2000.

Site Name	Address	Direction	Distance
Concord Landfill	755 Walden St	S-SE	.47 miles

4.7 U.S. EPA Brownfield Lists

The subject Site is not listed as a United States Environmental Protection Agency Brownfield Site. The EDR Report does not list any Brownfield sites within one mile of the Site.

4.8 National Priority List (NPL)

The subject Site is not listed as a NPL site. The EDR Report does not identify any NPL sites within one mile of the Site.

4.9 CERCLA Sites

The subject Site is not listed as a CERCLA site. The EDR Report does not identify any CERCLA sites within one mile of the Site.

4.10 Other Databases

FINDS (Facility Index System)

The Site is listed under Registry ID: 110036623801. The EDR Report describes this database as Environmental Interest/Information System from the National Center for Education Statistics, the primary entity responsible for collecting and analyzing data pertaining to education in the United States. The Site is listed because it is a school.

MANIFEST

The Site is listed under EPA I.D. MAP000067938. The EDR Report describes this database as the NY Manifest tracking database for hazardous waste shipments. The Site is listed for a one-time shipment of 7 pounds of D003 – Nonlisted Reactive Wastes on 8/18/1992.

4.11 Fire Department Records

On April 25, 2011, CDW reviewed all available records for the subject Site at the Concord Fire Department. A photocopy of FP-290R Notification and a report on the "Removal of Underground Storage Tanks Concord Public Schools and Concord-Carlisle Regional High School" (Attachment D) were obtained. The following records were reviewed:

- Permit FP-290 Part 3: 5,000 gallon aboveground storage tank (AST) at the bus transportation facility for the storage of diesel fuel. Dated 10/17/1998.
- Permit FP-290R: Notification of Removal of a 275 gallon waste oil tank dated 12/14/1998.
- "Report on the Removal of Underground Storage Tanks Concord Public Schools and Concord-Carlisle Regional High School", written by Gemini Geotechnical Associates, Inc. and dated 8/31/1990. The report included the removal and environmental review of three USTs that were removed from the Concord-Carlisle Regional High School. According to the report, two 15,000 gallon and one 10,000 gallon USTs were removed from the Site on July 17 and 18, 1990. All three tanks contained #4 fuel oil. The soils were analyzed for volatile organic compounds and total petroleum hydrocarbon. Results indicated that the soils were not contaminated and were used to backfill the excavation. The report stated that the tanks were satisfactorily removed in compliance with all applicable local and state laws.

No additional permits or closure reports were found at the fire department.

4.12 Building Department Records

On April 25, 2011, CDW reviewed the records of the Concord Building Department and obtained access to all available records pertaining to the subject Site.

The following records were reviewed:

- Original construction plans of the Concord-Carlisle Regional High School indicated the school originally used a septic system. Septic Tank A was adjacent and south of the access road off Walden Street. Septic Tank B was west of the physical education wing of the school. No information was shown on the location(s) of the leach fields.
- Massachusetts ANF-001 Form Asbestos Abatement Notification forms for the Concord-Carlisle Regional High School for the following years: 1988, 1993, and 2007.
- MassDEP Notice of Noncompliance, January 31, 2002, for accumulating old, unusable laboratory chemicals.

4.13 Water and Sewer Department Records

On April 25, 2011, CDW interviewed the clerk at the Concord Water and Sewer Department regarding the subject Site. She confirmed that the Concord-Carlisle Regional High School is connected to public water and public sewer. No information about when the school connected to public sewer or history of the septic system was available.

4.14 Planning Division and Historical Commission

On May 9, 2011, CDW interviewed Ms. Marcia Rasmussen, Director of the Planning Division and Historical Commission. Ms. Rasmussen stated that a gravel pit operated at the site during the 1920s and then Site was used as the town dump. Furthermore, Ms. Rasmussen contacted Mr. Jim Macone, whose family owned the gravel pit. Mr. Macone stated that the "Macone pit" and then the town dump were located at the site of the current student parking lot.

CDW was also provided records that pertained to the construction of athletic fields located on the subject parcel. A letter from the Massachusetts Historical Commission to the Secretary of Energy and Environmental Affairs, dated May 30, 2007, determined that "the portion of the woods slated for the playing fields is not of great value as an historic landscape since it already has been significantly disturbed" and that "no archaeological site is identified within or proximate to the boundaries of the site of the proposed playing fields."

A report on the "History of the Concord-Carlisle Regional High School Woods" by Mr. Richard O'Connor, 2007, was also reviewed (Excerpts from this report are in Appendix E). This report was presented to the Concord Historical Commission on May 30, 2007. The high school woods are located adjacent and south of the Site. The report indicated that the eastern portion of the current high school lot was used as a gravel-removing operation during the 1920s. Additionally, the report indicated that town dump was located on the subject parcel up through the 1950s. The report also included hand sketched maps depicting the property ownership from the 1800s to 1970s, and showed the location of the town dump and present day high school building in the same proximate area.

II. FINDINGS AND RECOMMENDATIONS

CDW Consultants, Inc. is providing our professional opinions, based upon our findings as detailed in the "Phase I Preliminary Site Assessment Summary." In addition, we have summarized the key observations and findings upon which these opinions are based.

From this study, CDW has made the following observations:

- The subject Site is located on a Town-owned parcel of land totaling approximately 94 acres. The Site occupies a portion of that parcel, and is improved with a one and two-story brick and concrete high school building (Concord-Carlisle Regional High School). The remainder of the Site is occupied by paved parking and vehicle access roadways, athletic fields, and landscaped and wooded areas as well as the school bus transportation facility and Beede Swim and Fitness Center.
- The school building was constructed in 1959. Historic documentation identified prior uses to include a gravel/sand pit and town dump.
- According to the Concord Fire Department, three (3) USTs that contained heating fuel oil were removed in 1990 and the 1 UST that contained waste oil was removed in 1998.
- The Site is not identified as a DEP Waste Disposal Site. No NPL sites and no current CERCLA listed sites are located within one mile of the Site. The Site is not listed as a RCRA small quantity generator of hazardous waste.

Based upon CDW's observations, there was no visible evidence of releases of oil or hazardous materials at the Site. Based upon the Site research conducted, there exist recognized environmental conditions at the Site which include:

- Documented use of the Site as a sand/gravel pit and the Town dump up until the 1950s.
- The possible presence of contaminated subsurface soil or groundwater due to former USTs, disposal into former septic system leaching fields, and/or undocumented discharges from sumps and floor drains.

12

• Possible subsurface impacts from undocumented on-site disposal of various waste oils, oil based paints, chemicals and solvents associated with laboratories and classrooms.

No conclusions or opinions can be made regarding the subsurface conditions at the Site without the completion of soil and groundwater sampling and analysis. CDW recommends the following to further investigate the environmental condition of the Site:

- CDW recommends that a Phase II subsurface investigation be conducted including the installation of monitoring wells, and comprehensive soil and groundwater analysis. The wells should be installed in areas to investigate the possible presence of contaminants from former uses, USTs, floor drains, sump and floor drain outlets, and septic system leach fields.
- The results of the soil and groundwater testing program should be compared with applicable standards under the Massachusetts Contingency Plan for notification and/or mitigation requirements. The outcome of the initial sampling efforts can be used to determine whether further investigation and/or remediation is warranted to mitigate potential environmental impacts prior to or during construction.
- During any excavation of the subsurface, if any suspect oil or hazardous materials are encountered, CDW recommends that an environmental consultant observe the excavation to determine whether conditions require mitigating measures prior to new construction.

III. LIMITATIONS

The conclusion is limited to the information available at the time of the investigation and the scope of services as defined. No subsurface exploration was performed on this Site; therefore, no conclusions can be made relative to subsurface conditions or the presence of soil or groundwater contamination from either on-site or off-site sources. In addition, where access to portions of the Site or to structures on the Site was unavailable or limited, CDW renders no opinion as to the presence of oil or hazardous material or the presence of indirect evidence related to oil or hazardous material in that portion of the Site or structure. No other conclusions, interpretations, or recommendations are contained or implied in this report other than those expressed. Also, CDW makes no warranty, expressed or implied, on the accuracy of the work and information completed by others and upon which CDW has relied to prepare this report. No other use of this report is warranted without the written consent of CDW Consultants, Inc.

IV. REFERENCES

- 1. Bedrock Geologic Map of Massachusetts, 1983.
- 2. Concord, Board of Assessor's, GIS Map Review, April 25, 2011.
- 3. Concord, Building Departments, Records Review, April 25, 2011.
- 4. Concord Fire Department, File Review, April 25, 2011.
- 5. Concord, Planning Division and Historical Commission, File Review, May 9, 2011.
- 6. Environmental Data Resources, Radius Map Report, April 15, 2011.
- 7. Environmental Data Resources, Sanborn Map Report, April 15, 2011.
- 8. Environmental Data Resources, Aerial Photo Report, April 15, 2011.
- 9. Johnson, Chris, Custodian, Concord-Carlisle Regional High School, April 21, 2011.
- 10. Massachusetts Department of Environmental Protection, Searchable Site List April 2011.
- 11. Massachusetts GIS Online Data Viewer, April 2011.
- 12. O'Connor, Richard. "History of the Concord-Carlisle Regional High School Woods" 2007
- 13. Wall, Steve, Building Supervisor, Concord-Carlisle Regional High School, April 21, 2011.
- 14. Wilson, Leslie, Curator, Special Collection, Concord Free Public Library, May 9, 2011.
- 15. United States Geological Survey, Concord, MA Topographic Quadrangle. 1987.
Concord Carlisle High School Concord, MA CDW Project #1234

APPENDIX A

Figures

CDW CONSULTANTS, INC.

CDW CONSULTANTS, INC.

SITE

CONCORD CARLISLE REGIONAL HIGH SCHOOL CONCORD, MA

SOURCE: MassGIS Commonwealth of MA EOEEA

PROJECT NO.: 1234.00 SCALE: 1:20,000

300

600 ft

CDW CONSULTANTS, INC.

HYDROGRAPHY

CONCORD-CARLISLE REGIONAL HIGH SCHOOL CONCORD, MA

SOURCE: MassGIS Commonwealth of MA EOEEA

PROJECT NO.: 1234.00

C D W

CDW CONSULTANTS, INC.

OPEN SPACE

CONCORD-CARLISLE REGIONAL HIGH SCHOOL CONCORD, MA

SOURCE: MassGIS Commonwealth of MA EOEEA

PROJECT NO.: 1234.00

CDW CONSULTANTS, INC.

NATURAL HERITAGE ATLAS

CONCORD-CARLISLE REGIONAL HIGH SCHOOL CONCORD, MA

SOURCE: MassGIS Commonwealth of MA EOEEA

PROJECT NO.: 1234.00

CDW CONSULTANTS, INC.

RESOURCE AREAS

CONCORD-CARLISLE REGIONAL HIGH SCHOOL CONCORD, MA

SOURCE: MassGIS Commonwealth of MA EOEEA

PROJECT NO.: 1234.00

Figure 7

Concord Carlisle High School Concord, MA CDW Project #1234

APPENDIX B Aerial Photographs

CDW CONSULTANTS, INC.

	20		
			and and
			St.A.
HAR STOR			
Destanting of the second second			
		A MARINE	
INQUIRY #: <u>3042836.4</u>	. Stir all		A CALLER AND
TEAK: 1969 Image: state st			

Concord Carlisle High School Concord, MA CDW Project #1234

APPENDIX C Environmental Database Report Executive Summary

CDW CONSULTANTS, INC.

A search of available environmental records was conducted by Environmental Data Resources, Inc (EDR). The report was designed to assist parties seeking to meet the search requirements of EPA's Standards and Practices for All Appropriate Inquiries (40 CFR Part 312), the ASTM Standard Practice for Environmental Site Assessments (E 1527-05) or custom requirements developed for the evaluation of environmental risk associated with a parcel of real estate.

TARGET PROPERTY INFORMATION

ADDRESS

500 WALDEN STREET CONCORD, MA 01742

COORDINATES

Latitude (North):	42.448700 - 42° 26' 55.3"
Longitude (West):	71.342900 - 71° 20' 34.4"
Universal Tranverse Mercator:	Zone 19
UTM X (Meters):	307325.4
UTM Y (Meters):	4702042.0
Elevation:	154 ft. above sea level

USGS TOPOGRAPHIC MAP ASSOCIATED WITH TARGET PROPERTY

Target Property Map:	42071-D3 CONCORD, MA
Most Recent Revision:	1987

AERIAL PHOTOGRAPHY IN THIS REPORT

Portions of Photo from:	2006, 2008
Source:	USDA

TARGET PROPERTY SEARCH RESULTS

The target property was identified in the following records. For more information on this property see page 7 of the attached EDR Radius Map report:

Site	Database(s)	EPA ID
CONCORD CARLISLE REGIONAL HIGH SC 500 WALDEN STREET CONCORD, MA 01742	FINDS	N/A
CONCORD CARLISLE REGIONAL SCHOOL 500 WALDEN STREET CONCORD, MA 01742	MANIFEST	N/A

DATABASES WITH NO MAPPED SITES

No mapped sites were found in EDR's search of available ("reasonably ascertainable ") government records either on the target property or within the search radius around the target property for the following databases:

STANDARD ENVIRONMENTAL RECORDS

Federal NPL site list

NPL	National Priority List
Proposed NPL	Proposed National Priority List Sites
NPL LIENS	Federal Superfund Liens

Federal Delisted NPL site list

Delisted NPL_____ National Priority List Deletions

Federal CERCLIS list

CERCLIS_____ Comprehensive Environmental Response, Compensation, and Liability Information System FEDERAL FACILITY_____ Federal Facility Site Information listing

Federal CERCLIS NFRAP site List

CERC-NFRAP...... CERCLIS No Further Remedial Action Planned

Federal RCRA CORRACTS facilities list

CORRACTS_____ Corrective Action Report

Federal RCRA non-CORRACTS TSD facilities list

RCRA-TSDF..... RCRA - Treatment, Storage and Disposal

Federal RCRA generators list

RCRA-LQG	RCRA - Large Quantity Generators
RCRA-SQG	RCRA - Small Quantity Generators
RCRA-CESQG	RCRA - Conditionally Exempt Small Quantity Generator

Federal institutional controls / engineering controls registries

US ENG CONTROLS...... Engineering Controls Sites List US INST CONTROL...... Sites with Institutional Controls

Federal ERNS list

ERNS_____ Emergency Response Notification System

State and tribal leaking storage tank lists

LUST..... Leaking Underground Storage Tank Listing

LAST	Leaking Aboveground Storage Tank Sites
INDIAN LUST	Leaking Underground Storage Tanks on Indian Land

State and tribal registered storage tank lists

AST	Aboveground Storage Tank Database
INDIAN UST	Underground Storage Tanks on Indian Land
FEMA UST	Underground Storage Tank Listing

State and tribal institutional control / engineering control registries

INST CONTROL..... Sites With Activity and Use Limitation

State and tribal voluntary cleanup sites

INDIAN VCP..... Voluntary Cleanup Priority Listing

ADDITIONAL ENVIRONMENTAL RECORDS

Local Brownfield lists

US BROWNFIELDS..... A Listing of Brownfields Sites

Local Lists of Landfill / Solid Waste Disposal Sites

ODI	Open Dump Inventory
DEBRIS REGION 9	Torres Martinez Reservation Illegal Dump Site Locations
INDIAN ODI	Report on the Status of Open Dumps on Indian Lands

Local Lists of Hazardous waste / Contaminated Sites

US CDL_____ Clandestine Drug Labs US HIST CDL_____ National Clandestine Laboratory Register

Local Land Records

LIENS 2	CERCLA Lien Information
LUCIS	Land Use Control Information System

Records of Emergency Release Reports

HMIRS...... Hazardous Materials Information Reporting System SPILLS...... Historical Spill List

Other Ascertainable Records

RCRA-NonGen	RCRA - Non Generators
DOT OPS	Incident and Accident Data
DOD	Department of Defense Sites
FUDS	Formerly Used Defense Sites
CONSENT	Superfund (CERCLA) Consent Decrees
ROD	Records Of Decision
UMTRA	Uranium Mill Tailings Sites
MINES	Mines Master Index File

TRIS TSCA FTTS	Toxic Chemical Release Inventory System Toxic Substances Control Act FIFRA/ TSCA Tracking System - FIFRA (Federal Insecticide, Fungicide, & Rodenticide Act)/TSCA (Toxic Substances Control Act)
HIST FTTS	FIFRA/TSCA Tracking System Administrative Case Listing
SSTS	. Section 7 Tracking Systems
ICIS	. Integrated Compliance Information System
PADS	PCB Activity Database System
MLTS	Material Licensing Tracking System
RADINFO	Radiation Information Database
RAATS	RCRA Administrative Action Tracking System
NPDES	NPDES Permit Listing
DRYCLEANERS	Regulated Drycleaning Facilities
ENF	Enforcement Action Cases
AIRS	Permitted Facilities Listing
LEAD	Lead Inspection Database
INDIAN RESERV	Indian Reservations
SCRD DRYCLEANERS	State Coalition for Remediation of Drycleaners Listing
FINANCIAL ASSURANCE	Financial Assurance Information Listing
GWDP	Ground Water Discharge Permits
COAL ASH DOE	Sleam-Electric Plan Operation Data
COAL ASH EPA	Coal Combustion Residues Surface Impoundments List
PCB TRANSFORMER	PCB Transformer Registration Database

EDR PROPRIETARY RECORDS

EDR Proprietary Records

Manufactured Gas Plants_____ EDR Proprietary Manufactured Gas Plants

SURROUNDING SITES: SEARCH RESULTS

Surrounding sites were identified in the following databases.

Elevations have been determined from the USGS Digital Elevation Model and should be evaluated on a relative (not an absolute) basis. Relative elevation information between sites of close proximity should be field verified. Sites with an elevation equal to or higher than the target property have been differentiated below from sites with an elevation lower than the target property. Page numbers and map identification numbers refer to the EDR Radius Map report where detailed data on individual sites can be reviewed.

Sites listed in *bold italics* are in multiple databases.

Unmappable (orphan) sites are not considered in the foregoing analysis.

STANDARD ENVIRONMENTAL RECORDS

State- and tribal - equivalent CERCLIS

SHWS: Contains information on releases of oil and hazardous materials that have been reported to DEP.

A review of the SHWS list, as provided by EDR, and dated 01/11/2011 has revealed that there are 10

SHWS sites within approximately 1 mile of the target property.

Lower Elevation	Address	Direction / Distance	Map ID	Page
TUTTLES LIVERY Compliance Status: No Further Action (DI	35-45 WALDEN ST EP Determined)	NNW 1/2 - 1 (0.800 mi.)	9	33
NO LOCATION AID Compliance Status: Release Action Outco Compliance Status: Release Action Outco *Additional key fields are available in the	1089 CONCORD TPKE ome ome Map Findings section	W 1/2 - 1 (0.804 mi.)	B10	34
CONCORD SUNOCO Compliance Status: Release Action Outco	1089 CONCORD TURNPIKE	W 1/2 - 1 (0.804 mi.)	B11	40
NO LOCATION AID Compliance Status: Release Action Outco	41 MAIN ST REAR	NNW 1/2 - 1 (0.837 mi.)	12	61
PROPERTY Compliance Status: Release Action Outco Compliance Status: Release Action Outco *Additional key fields are available in the	211 SUDBURY RD ome ome Map Findings section	WNW 1/2 - 1 (0.850 mi.)	14	67
MILL BROOK Compliance Status: Release Action Outco	34 MAIN ST (NEAR) ome	NNW 1/2 - 1 (0.859 mi.)	15	77
STATION 2169 CUMBERLAND FARMS Compliance Status: Release Action Outco Compliance Status: Release Action Outco *Additional key fields are available in the	120 THOREAU ST ome ome Map Findings section	NW 1/2 - 1 (0.887 mi.)	C16	79
BEHIND COLONIAL INN Compliance Status: Release Action Outco	48 MONUMENT SQ	NNW 1/2 - 1 (0.938 mi.)	18	90
NO LOCATION AID Compliance Status: Response Action Out	50 BELKNAP ST tcome Not Required	NW 1/2 - 1 (0.962 mi.)	D19	93
SERVICE STATION FMR Compliance Status: Release Action Outco	48 THOREAU ST	NW 1/2 - 1 (0.992 mi.)	21	109

State and tribal landfill and/or solid waste disposal site lists

SWF/LF: The Solid Waste Facilities/Landfill Sites records typically contain an inventory of solid waste disposal facilities or landfills in a particular state. The data come from the Department of Environmental Protection's Solid Waste Facility Database/Transfer Stations.

A review of the SWF/LF list, as provided by EDR, and dated 01/03/2011 has revealed that there is 1 SWF/LF site within approximately 0.5 miles of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page
CONCORD LANDFILL	755 WALDEN ST	SSE 1/4 - 1/2 (0.468 mi.)	4	9

State and tribal registered storage tank lists

UST: The Underground Storage Tank database contains registered USTs. USTs are regulated under Subtitle I of the Resource Conservation and Recovery Act (RCRA). The data come from the Department of Environmental Protection's Summary Listing of all the Tanks Registered in the State of Massachusetts.

A review of the UST list, as provided by EDR, and dated 03/04/2011 has revealed that there is 1 UST

site within approximately 0.25 miles of the target property.

Lower Elevation	Address	Direction / Distance	Map ID	Page
CONCORD-CARLISLE REGIONAL SCHO	300 WALDEN ST	N 1/8 - 1/4 (0.230 mi.)	3	9

ADDITIONAL ENVIRONMENTAL RECORDS

Records of Emergency Release Reports

RELEASE: MA Release Tracking Database.

A review of the RELEASE list, as provided by EDR, and dated 01/11/2011 has revealed that there are 17 RELEASE sites within approximately 1 mile of the target property.

Lower Elevation	Address	Direction / Distance	Map ID	Page
CONCORD FIRE DEPARTMENT Facility Status: Response Action Outcome	209 WALDEN ST	N 1/2 - 1 (0.548 mi.)	5	10
Not reported Facility Status: Response Action Outcome	105 EVERETT ST	NW 1/2 - 1 (0.552 mi.)	6	15
NYNEX COMMUNICATIONS OFFICE Facility Status: Response Action Outcome Facility Status: Response Action Outcome	111 WALDEN ST	NNW 1/2 - 1 (0.683 mi.)	7	19
NO LOCATION AID Facility Status: Response Action Outcome	148-150 HUBBARD ST	NW 1/2 - 1 (0.707 mi.)	8	27
TUTTLES LIVERY Facility Status: DEP No Further Action	35-45 WALDEN ST	NNW 1/2 - 1 (0.800 mi.)	9	33
NO LOCATION AID Facility Status: Response Action Outcome Facility Status: Response Action Outcome	1089 CONCORD TPKE	W 1/2 - 1 (0.804 mi.)	B10	34
CONCORD SUNOCO Facility Status: Response Action Outcome	1089 CONCORD TURNPIKE	W 1/2 - 1 (0.804 mi.)	B11	40
NO LOCATION AID Facility Status: Response Action Outcome	41 MAIN ST REAR	NNW 1/2 - 1 (0.837 mi.)	12	61
MOBIL STATION PROPERTY Facility Status: Response Action Outcome Facility Status: Response Action Outcome *Additional key fields are available in the N	143 SUDBURY ST 211 SUDBURY RD lap Findings section	NW 1/2 - 1 (0.840 mi.) WNW 1/2 - 1 (0.850 mi.)	13 14	65 67
MILL BROOK Facility Status: Response Action Outcome	34 MAIN ST (NEAR)	NNW 1/2 - 1 (0.859 mi.)	15	77
STATION 2169 CUMBERLAND FARMS Facility Status: Response Action Outcome Facility Status: Response Action Outcome	120 THOREAU ST	NW 1/2 - 1 (0.887 mi.)	C16	79
NO LOCATION AID Facility Status: Response Action Outcome	120 THOREAU ST	NW 1/2 - 1 (0.887 mi.)	C17	85
BEHIND COLONIAL INN Facility Status: Response Action Outcome	48 MONUMENT SQ	NNW 1/2 - 1 (0.938 mi.)	18	90
NO LOCATION AID Facility Status: Response Action Outcome	50 BELKNAP ST Not Required	NW 1/2 - 1 (0.962 mi.)	D19	93

Lower Elevation	Address	Direction / Distance	Map ID	Page
MAIN STREET Facility Status: Response Action Outcome	50 BELKNAP ST	NW 1/2 - 1 (0.962 mi.)	D20	101
SERVICE STATION FMR Facility Status: Response Action Outcome	48 THOREAU ST	NW 1/2 - 1 (0.992 mi.)	21	109

Due to poor or inadequate address information, the following sites were not mapped. Count: 20 records.

Site Name

CONCORD MIDDLE SCHOOL SANBORN BLDG FACILITY #62 CROSBY CORNER ACROSS FROM STATE HWY GARAGE MCI BUILDING F HAYES PUMP SITE FMR NEAR INTERSECTION WITH RTE 2 AND R SITE 6 NEAR CONCORD LINE SITE 3 BEHIND SMITH HOUSE OLD SANITARY LANDFILL LINCOLN TRANSFER STATION EXECUTIVE FLYERS AVIATION TEXACO SERVICE STATION LINCOLN SCHOOL LINCOLN SCHOOL DEPT CONCORD SANITARY LANDFILL SWANSON PONTIAC CONCORD SUBARU CONCORD SUBARY WALDEN POND STATE RESERVATION

Database(s)

FTTS, HIST FTTS INSP, FINDS HWS,RELEASE HWS,RELEASE HWS,RELEASE HWS,RELEASE HWS,RELEASE HWS,RELEASE HWS,RELEASE HWS,RELEASE HWS,RELEASE LF INST CONTROL, RELEASE, LUST RCRA-CESQG FINDS FINDS ODI MANIFEST MANIFEST MANIFEST MANIFEST

Concord Carlisle High School Concord, MA CDW Project #1234

APPENDIX D

Excerpts from "Report on Removal of Underground Storage Tanks"

CDW CONSULTANTS, INC.

GEMINI GEOTECHNICAL ASSOCIATES, INC.

875 Greenland Road • Portsmouth, NH 03801 • (603) 427-0141

August 31, 1990 Project No. 89035MA

Concord Public Schools Concord - Carlisle Regional School District 120 Meriam Road Concord, Massachusetts 01742

Attn: Dr. Gerald E. Missal

Re: Report on Removal of Underground Storage Tanks Concord Public Schools and Concord - Carlisle Regional High School Concord, Massachusetts

Dear Dr. Missal;

In accordance with your approval of our proposal GGA89.127.0, dated September 19, 1989, Gemini Geotechnical Associates, Inc. has performed engineering design services and environmental review for the removal of thirteen underground storage tanks in the Town of Concord during 1990. These tanks include :

<u>Facility</u>	<u>Size</u>	<u>Installed</u>	<u>Fuel</u>
Alcott School	5,000 gal.	1951	No. 2
Alcott School	8,000 gal.	1955	No. 2
Willard School	10,000 gal.	1958	No. 4
Willard School	500 gal.	1965	No. 4
Sanborn School	10,000 gal.	1966	No. 4
Peabody School	10,000 gal.	1970	No. 4
Thoreau School	5,000 gal.	1951	No. 2
Thoreau School	5,000 gal.	1955	No. 2
Concord - Carlisle High School	15,000 gal.	1960	No. 4
Concord - Carlisle High School	15,000 gal.	1965	No. 4
Concord - Carlisle High School	10,000 gal.	1960	No. 4
Ripley Administration Building	10,000 gal.	1958	No. 2
Ripley Administration Building	500 gal.	1969	No. 2

The tanks were removed by Zenone, Inc. of Leominster, Massachusetts between July 10 and July 19, 1990. All removals were monitored by Gemini Geotechnical Associates, Inc., who retrieved samples for laboratory testing and screened soils for volatile organic compounds during the excavation.

Description of Sites

A site location plan is attached as Figure 1. The schools are located as follows:

<u>School</u>	<u>Street</u>	<u>Coordinates</u>
Alcott School	Laurel Lane	42°27'14"N, 71°20'53"E
Willard School	Powder Mill Road	42°25'47"N, 71°22'55"E
Sanborn School	Marlboro Road	42°26'30"N, 71°23'39"E
Peabody School	Old Marlboro Road	42°26'01"N, 71°24'14"E
Thoreau School	Prairie Street	42°27'07"N, 71°23'49"E
Concord - Carlisle High School	Thoreau Street	42°26'51"N, 71°20'42"E
Ripley Administration Building	Meriam Road	42°27'53"N, 71°19'53"E

There are five public drinking water wells in Concord. Four of these wells, the Hugh Cargiol Well, the White Pond Well, the Jennie Dugan Well, and the Second Division Well, are located within 1 mile of schools where the tank removals took place. The Hugh Cargiol Well, located near the intersection of Thoreau and Walden Streets, is approximately one quarter of a mile east of the Concord - Carlisle High School. The White Pond Well is located in the Dover Street area, just south of White Pond, and is located approximately one quarter of a mile southwest of the Willard School. The Jennie Dugan Well, located on Old Mariboro Road, is within one-half mile east of the Peabody School and within one-half mile southwest of the Sanborn School. The Second Division Well, which is located in the area of Border Road in West Concord, is approximately three quarters of a mile northwest of the Peabody School.

Tank Excavation and Removal

General

The finished tank excavation areas and the excavated soils were inspected and screened for total volatile organic compounds (VOC's) with a portable Organic Vapor Meter (OVM). The OVM is used to measure concentrations of total volatile

organic compounds in air, which include benzene, toluene and xylenes which are compounds contained in gasoline and petroleum products. The air in the headspace of soil samples is continuously fed into the OVM by a positive displacement pump, and is introduced into a high energy ultraviolet photoionization detector, where a small portion of the sample is ionized. The amount of ions reaching the electrode is proportional to the concentration of organic molecules. The OVM 580A is manufactured by Thermo Environmental Instruments, Inc. of Franklin, MA, and has a detection limit of 0.1 parts per million. Soils were tested by analyzing the air from the head space developed in jar soil samples, and also by screening the soils in-situ.

Alcott Elementary School

Two underground storage tanks, with storage capacities of 5,000 and 8,000 gallons, were removed at the Alcott School on July 10, 1990 by Zenone, Inc. of Leominster, Massachusetts. The 5,000 gallon tank, referred herein as Tank #1, was located on the north side of the school, approximately 15 ft. south of the boiler room, aligned north to south. The 8,000 gallon tank, referred to as Tank #2, was located approximately 20 ft. north and 50 ft. west of Tank #1, and was aligned east to west. Photographs of the site are included in Appendix A.

The soils within the area excavated during removal of the 5,000 gallon tank consisted of a cobbley and bouldery sand, which was mostly fine and contained a fairly high silt content. Soils from the excavation were visibly stained with petroleum product and exhibited an odor characteristic to petroleum products. Excavated soils and soils at the bottom of the excavation were sampled in glass jars and screened for VOCs with the portable OVM. Results of the screenings ranged from non-detectable to concentrations up to 42.8 ppm.

The 5,000 gallon tank excavation was approximately 30 ft. long and 10 ft. deep. Groundwater was encountered at 8 ft. below the surface grade. The most contaminated soils were located under the tank where the fill pipe end of the tank had been located. Upon removal, the tank was somewhat rusted and pitted, but no holes were obvious. Laboratory analysis of the soils remaining in the excavation following the removal of the three loads of heavily contaminated soils revealed a petroleum hydrocarbon concentration of 420 ppm for a soil sample obtained in the fill end area, and a petroleum hydrocarbon concentration. Laboratory results are included as Appendix B.

Mike Garrosi of the Massachusetts Department of Environmental Protection was contacted by telephone in regards to management of the contaminated soils. Mr.

1

ft. long and 15 ft. deep and the area occupied by Tank #2 was approximately 10 ft. long and 10 ft. deep. The removal of Tank #1 was complicated by underground utility wires and piping located to the top and north side of the tank, but the tank was eventually removed without incident. Tank #2 was found to contain some oil at the time of removal, and a small amount (1 - 5 gallons) was spilled onto the grass near the excavation at the time of removal. This small spill was promptly contained and removed by Zenone, Inc. personnel.

Soils around the tanks were collected in glass jars and screened with the OVM. Insitu OVM readings were also taken from soils surrounding the tank. Soils sampled from the sides of Tank #1 showed volatile organic compound concentrations ranging from 5.6 to 24.1 ppm. In-situ readings taken from a pile of soils which had been located on the west side of the tank ranged from 1 to 2 ppm. There was no visible discoloration of the soils excavated, nor in the excavation, and only a very slight petroleum odor could be detected. Laboratory analysis of soils which were directly underneath Tank #1 indicated that a Total Petroleum Hydrocarbon concentration of 74 ppm was detected in soils sampled under the end of the tank opposite the fill end. Soil samples obtained from underneath the fill end of the tank and underneath the middle of the tank were found to be below detection limits.

Upon excavation, Tank #2 was observed to be situated on a concrete base and surrounded by concrete walls. Soils under the concrete and soils in the area of the tank were sampled and screened with the OVM, and no volatile organics were detected. A laboratory analysis was performed on a single soil sample obtained from the bottom of this excavation. The results indicated that the Total Petroleum Hydrocarbon concentration level of the soils sampled was below detection limits.

Upon excavation, both tanks were found to be in good condition with some rusting and very little pitting. No holes were evident in either of the two tanks. The excavations were backfilled with the existing soils, which consisted of a brown, cobbley, mostly fine sand with a small amount of silt.

Sanborn Middle School

A 10,000 gallon underground No. 4 fuel oil storage tank was removed at the Sanborn Middle School on July 12, 1990. The tank was located approximately 20 ft. off the southwest wall of the school, near the southern corner of the building. The tank was aligned northwest to southeast. Soils at the site consisted of a mostly fine sand with some silt, and traces of gravel and cobbles. Photographs of the excavated area and the removed tank are included in Appendix A.

jars and screened with the OVM. VOC concentrations of 4.0 and 0.6 ppm were detected for these samples. In addition, three samples obtained from soils at the bottom of the excavation, and one sample composited from soils which had been removed from the sides of the tank, were collected and sent to the laboratory to be analyzed for Total Petroleum Hydrocarbons. Lab results indicated that a sample taken from soils under the middle section of the tank, as well as the soils sampled from the sides of the tank showed no detectable concentrations of petroleum hydrocarbons. Soils underneath the fill end of the tank exhibited a petroleum hydrocarbon concentration of 67 ppm; soils underneath the opposite end of the tank showed a petroleum hydrocarbon concentration of 66 ppm.

The excavation was backfilled with the soils which originally filled the excavation.

Thoreau Elementary School

Two 5,000 gallon underground #2 fuel oil tanks were removed at the Thoreau School on July 16, 1990. The tanks were located side by side approximately 5 ft. from the north wall of the building and were aligned north to south. Soils at the site consisted of a coarse to fine, but mostly fine, silty brown sand, which contained some gravel and cobbles.

A strong petroleum odor was noted in the vicinity of the excavation. Initially, no petroleum soaked soils were visible, but after removing soils at the bottom of the excavation, soils heavily soaked with petroleum were found to be situated below the level at which the tanks rested and above a concrete slab on which the tanks were installed. To the left of the excavation, where Tank #1 had been, soils closest to the building in the area of the tank's end were visibly stained with fuel oil.

An inspection of the two tanks following removal revealed oil stains on both tanks. Tank #1, located on the left when viewing the tanks from Prairie Street, was stained at the fill end, near the manhole; Tank #2, located to the right, was stained on the top center, surrounding the manhole. In addition, both tanks were rusted, although there was little to no pitting to the tanks. No holes were evident in the tanks.

In-situ OVM readings taken from soils which had surrounded the top and sides of the tanks ranged from nondetectable to 28.8 ppm. Samples of these soils were also collected in glass jars and screened with the OVM. These soil samples were found to contain VOC's at concentrations of 30.0, 53.3, and 30.0 ppm. In addition, jar soil samples were collected prior to removing the heavily contaminated soils for stockpiling and sent to the lab to be analyzed for Total Petroleum Hydrocarbons. These samples indicate that contamination underneath the right tank was less extensive than contamination underneath the tank to the left. Laboratory results indicate a petroleum hydrocarbon concentration of 5000 ppm in the area of the piping into the school. A sample taken at the end opposite the fill end on the right tank was found to contain 220 ppm of petroleum hydrocarbons; a sample taken from the end of the tank closest to the fill was found to contain a concentration of hydrocarbons of 310 ppm. Lab results showed a petroleum hydrocarbon concentration of 4800 ppm at the end of the tank closest to the fill end, and a concentration of 4800 ppm at the opposite end of the tank (closest to the school). According to these results, and visual evidence, the heaviest contamination in the excavation was in the soils closest to the building. It should be noted however, that these lab results reflect the petroleum content of the original soils in the soils which remain in the excavation may be lower than levels indicated here.

Mike Garrosi of the Massachusetts Department of Environmental Protection was notified of the contamination at the site. Mr. Garrosi stated that the most heavily contaminated soils should be removed and that a site assessment would most likely be required at the site at a later date. Three loads, totalling 48 cu. yds., of the most heavily contaminated soils were removed from the excavation. The excavation was then backfilled with other soils from the excavation as well as offsite loads of fresh fill. The contaminated soils were transported to Town land located near the High School and stockpiled using plastic sheeting.

Concord - Carlisle High School

Two 15,000 gallon and one 10,000 gallon underground storage tanks were removed from the Concord - Carlisle High School on July 17 and July 18, 1990. All three tanks had contained #4 fuel oil. Photographs of the tanks and the excavations are included in Appendix A.

A 15,000 gallon tank located partially under a walkway near the High School Gym was removed on July 17, 1990. The tank was aligned northeast to southwest and extended out from the northeast side of the gymnasium. The tank removal was complicated by the location of the tank. During excavation, it was discovered that the tank extended approximately 6 ft. under an addition to the building subsequent to the tank installation. The addition, which is a walkway to the gymnasium, has a concrete base, and while the tank was not supporting any part of the addition, the concrete base was situated directly over the tank. Concrete support piles located on either side of the tank transferred the wall load to the soils below the tank. At the completion of the removal, the excavation was approximately 20×20 ft. sq. and ten feet deep, as a result of the large amount of soils excavated around the tank in order to facilitate the tank removal.

The tank was eventually removed from the excavation with no apparent structural damage to the surrounding building. No visible or obvious evidence of a petroleum release was noted in the excavation. In-situ OVM readings of soils taken from the top and sides of the tank showed no presence of volatile organic compounds. Soil samples taken from the bottom of the excavation were placed in glass jars and screened with the OVM. These samples were found to have no detectable concentrations of VOC's. Samples analyzed in the lab showed a Total Petroleum Hydrocarbon concentration of 380 ppm for an area at the bottom of the tank between the middle of the tank and the fill end. A sample taken near the opposite end of the tank, near where the tank had extended under the building was below detection limits, and a sample taken from soils which had surrounded the sides of the tank showed a petroleum hydrocarbon concentration of 60 ppm. The tank itself was found to be slightly rusted and pitted, with no holes or staining, with the exception of a crack made near the fill end of the tank during excavation.

The 15,000 gallon tank at the Science Building was removed on July 18, 1990. The tank was located outside the southeast wall of the Science Building, and was situated perpendicular to the building wall. Soils in the vicinity of this tank consisted of a dry, light brown gravelly and cobbley sand. Upon removal of the tank, the soils appeared clean, with no free product or groundwater present. The excavation was approximately 12 ft. deep. The tank was found to be in good shape with no excessive rusting or pitting observed. No holes were found in the tank, with the exception of one hole which was made during excavation.

The soils were screened for volatile organic compounds using the OVM. Soils which had been removed from the excavation were screened in-situ, and eight readings of no VOC detection were obtained, as well of readings of 4.1 ppm, 6.3 ppm, and 7.1 ppm. Four samples were collected from the bottom of the excavation and placed in glass jars. These readings obtained from these samples included one reading below detection limits, a reading of 0.7 ppm, a reading of 3.0 ppm, and a reading of 30.1 ppm, which was obtained from a sample taken near the fill end of the tank. Mike Garrosi, of the Massachusetts Department of Environmental Protection was telephoned and notified of this last, elevated reading. Two samples from the bottom of this excavation were collected and sent to the laboratory for analysis. The samples, taken from soils under each end of the tank, were reported to have concentrations of petroleum hydrocarbons below detection limits.

No soils were removed for stockpile, and the excavation was backfilled with the original soils.

The 10,000 gallon tank at the Arts Building was removed on July 18, 1990. The tank was located on the northeast side of the school, and was situated parallel to the wall of the building. The soils in the area were observed to be dry, light brown, gravelly sand.

The final excavation was 15 ft. wide and 9 ft. deep. No free product or groundwater was encountered during the excavation. Upon removal, the tank was found to be in good condition with no evidence of holes or excessive rusting or pitting. Samples taken from the bottom of the excavation and placed in glass jars were screened with the OVM. Concentrations of volatile organic compounds ranged from non-detectable to 2.7 ppm. These samples were also tested in the laboratory for Total Petroleum Hydrocarbon concentrations. The lab results indicate that these samples, taken from each end of the tank, as well as from the middle of the tank, contain concentrations of petroleum hydrocarbons which are below detection limits. The excavation was backfilled with the original soil material.

Ripley Administration Building

Two underground #2 fuel oil storage tanks, one 10,000 gallons and one 500 gallons, were removed at the Ripley Administration Building on July 19, 1990. The tanks were located on the north side of the school building, perpendicular to the building. The tanks were aligned end to end, with the 10,000 gallon tank closest to the school. Both of the tanks were on top of concrete slabs.

During excavation, groundwater was encountered at approximately 6 to 8 ft. The natural soils in the area were observed to be a fine tan sand, and the fill that had been used to cover the tanks was a medium to coarse sand. No free product or oily soils were observed in the excavation. The soils were monitored with the OVM and only slight values of volatile organic compounds (less than 10 ppm) were found in an area on the north side of the excavation, under the fill and next to the slab for the 500 gallon tank. The tanks were difficult to extricate due to the groundwater, which caused a suction force on the tank.

Jar soil samples were taken from soils located underneath the two tanks, and were tested in the laboratory for Total Petroleum Hydrocarbons. The results of laboratory testing indicates that no detectable amounts of petroleum hydrocarbons Concord Public Schools, Concord - Carlisle Regional High School August 31, 1990

Project No. 89035MA Page 11

were found for soils under each end of the 10,000 gallon tank, but that a petroleum hydrocarbon concentration of 210 ppm was detected for soils sampled from underneath the 500 gallon tank.

Upon excavation the tanks were found to be rusted (the 500 gallon tank more so than the 10,000 gallon tank), but there were no holes or evidence of leakage, with the exception one hole which was made in the 10,000 gallon tank during removal.

Conclusions

Based on the data presented in this report, it is our professional opinion that the tanks were satisfactorily removed in compliance with all applicable local and state laws. Contaminated soils were encountered at two sites, the Alcott and Thoreau Schools. The extent of contamination is expected to be limited because it appears that the release of oil at both sites had occurred as a result of spillage or overfilling. The tanks at the Thoreau School had been set on a concrete slab, which would limit the extent of migration of contaminants. A total of 96 cu. yds. of contaminated soil was removed from the sites and stockpiled for disposal.

The Massachusetts DEP was notified of the contamination in accordance with DEP requirements. In accordance with the Massachusetts Contingency Plan, 310 CMR 40.00 the Alcott and Thoreau schools will be listed as Locations To Be Investigated (LTBI). Additional field investigations may be required by the DEP upon the review of the data presented in this report.

Very truly yours, GEMINI GEOTECHNICAL ASSOCIATES, INC.

Liba M. Morgan

Lisa M. Morgan Environmental Geologist

Frank S. Vetere, P.E., Principal Director of Technical Services

FSV:LMM:lm Attachments

Concord Carlisle High School Concord, MA CDW Project #1234

APPENDIX E

EXCERPTS FROM HISTORICAL REPORT: "History of the Concord-Carlisle Regional High School Woods" 2007

CDW CONSULTANTS, INC.

thort, "Cut Woods" in his Journal entries of June 21 and 23, 1854, May and October 14, 1856, and October 22, 1860, later published as part of his Journals first in 1906. This area was critical to the formulation of his ideas on succession presented in The Succession of Forest Trees lecture and essay and in Dispersion of Seeds (published much later as Faith In A Seed).

2

In 1887 several leading citizens of Concord recognized the beauty of this woods when they had the four acre parcel of land recently donated to the town by the heirs of Ralph Waldo Emerson for a public playground, drill ground, and ceremonial site landscaped so as to frame it as a "distant view" from the playground. That parcel is still part of Emerson Playground, but the original "distant view" of this fringe of Walden Woods has since been obscured by the construction of houses and growth of trees.

The Concord Turnpike (Route 2) was constructed in 1934 over this hill. It had been supported and lobbied for by most Concordians as it would take major through traffic away from the center of town. It generally followed the route of the old Cambridge -Concord Turnpike west to Crosby Corner, turned southwest up the hill and proceeded northwest through Deep Cut Woods. Most landowners along Route 2 wanted the town to re-zone their land so they could capitalize on the substantial traffic coming through. The selectmen realized they could not let everyone put a business, tearoom, or roadside stand on their land along the highway and, although they considered a number of different propositions (including a buyer who wanted to put a restaurant here), they decided, meeting with the selectmen of other towns along Route 2 in this area, to keep the highway corridor free from business development with the exception of filling stations at intervals and a few local produce stands. H. Whittemore Brown, president of Concord's Board of Trade and a selectman, and fellow selectman Edward Caiger, were instrumental in implementing this decision, which was referred to as the "Gentleman's Agreement" and which remained in effect into the 1960s. Concord's planning board concurred. In 1935 the town purchased the present Town Forest and on March 8, 1943 voted to sell the portion of the Butterfield lot north of the highway (containing all but about 4 acres of it) to West Concord real estate dealer Waldo Lapham - 35.07 acres for \$1200 (Middlesex County South deed book 6746 page 545, 2/29/1944). Lapham had owned other land in this area (the eastern portion of the current high school lot) since the mid 1920s and carried out a gravel-removing operation here. The town dump was on his land, for which he started charging the town a rental fee from about 1950. He bought other land in this area as well and was planning a shopping center and a residential development for the future.

With the significant growth of the town following World War Two it became necessary to build a new high school and after consideration of a number of sites it was decided to build it here. So the town took the land they had let go over a decade earlier, as well as other land owned by Lapham and others to the east and north in November 1955. 56.3 acres were taken from Lapham as smaller amounts from Gaetano Taranto and Theodore and Reed Beharrell (the former holdings of the last two owners now constitutes much of the current playing fields) (M. Cty. South deed book 8637 page 308, 12/6/1955, Taking under the state legislature's Chapter 566 of the Acts of 1955 (under Ch. 79 of the state's General Laws)). The final settlement, in 1957, cost the I believe upwards of \$60,000 (see deed Lapham to Town of Concord, Middlesex County South deed book 8997 pg. 108, 7/19/1957 and 8959 pg 522 of 5/28/1957). Concord conveyed the taken land to the Concord-Carlisle Regional School District on 8/18/1958 (bk 9229 pg 160). The new high school was constructed 1958 to 1960 and opened in September of that year. During this construction a small part on the north edge of Deep Cut Woods leveled to create athletic fields. The wooded portion behind the new school was left intact to buffer the school from the noise, fumes, and danger of Route 2. The high school's athletic department laid out a cross country running course through the woods which has been in use since then School classes and environmental and nature clubs led by football coach Al Robichaud used the High School Woods as a laboratory for study and it soon became a "hangout" for students.

Lapham (and his heirs, as he died in 1960) were allowed to retain several acres in this area which became the Bristers Hill Road housing subdivision of 1961. Homes on this road were built between 1961 and 1964. The new residents and their successors quickly adopted these woods as their own, holding them in high esteem for their aesthetic as well as recreational values.

Cut Trink School Woods has been assembled to

PRINCIPALS AND ASSOCIATE

Yee Cho, P.E., L.S.P. Kathleen Campbell, P.E., L.S.P, LEED, AP John Goodhall, P.E.

May 13, 2011

Ms. Lisa Pecora-Ryan Office of Michael Rosenfeld, Inc. 543 Massachusetts Avenue West Acton, MA 01720

RE: Hazardous Materials Summary Report Concord-Carlisle High School, Concord, Massachusetts CDW Project #1135.00

Dear Ms. Pecora-Ryan

CDW Consultants, Inc. (CDW) is pleased to present this letter report summarizing the findings of the prerenovation and/or demolition testing and hazardous materials survey of Concord-Carlisle High School ("Site") in the town of Concord, Massachusetts. The scope of work was to identify and quantify asbestoscontaining building materials (ACM), lead-based paint (LBP), mercury switches, transformers, light ballasts, fluorescent tubes, and other visible hazardous materials.

Smith and Wessel Associates, Inc. Hazardous materials Assessment Report Review

CDW reviewed the Hazardous Materials Assessment Report, prepared by Smith and Wessel Associates, Inc. dated June 6, 2005. Findings of the Smith and Wessel Report are presented in the below table.

Description	Location	Quantity
9" x 9" Floor Tile and Mastic	Auditorium, Classrooms,	25,550 SF
	Storage, Offices, Throughout	
12" x 12" Floor Tile and Mastic	Halls, Administration,	26,200 SF
Over 9" x 9" Floor Tile	Classrooms	
12" x 12" Floor Tile and Mastic	Building L	12,500 SF
Carpet Mastic	Library	3,500 SF
Mudded Pipe Fittings	Throughout	2,000 Each
Pipe Insulation	Behind/Above Fixed Walls and	1,400 LF
	Ceilings	
Ceiling Tile and Associated Glue	Rear Stage Hall and Storage	300 SF
Daubs		
2' x 4' and 2' x 2' Ceiling Tile	Band Room, Hall, Offices,	8,425 SF
	Orchestra Room	
Fire Doors	Stage and Hall Areas	10 Doors
Stage Fire Curtain	Stage	1 Each

Smith and Wessel Summary (Continued)

Description	Location	Quantity
Fume Hoods	Lab S-14	2 Each
Gym Floor Vapor Barrier	Upper Gym	10,000 SF
Popcorn Ceiling	Main Lobby and Hall	600 SF

Suspect Asbestos Containing Materials

During the month of April 2011, CDW personnel Edwin Morgan (Massachusetts Licensed Asbestos Inspector #51838) conducted a visual inspection of all accessible areas of the site building. A total of 198 bulk samples were collected from materials suspected to contain asbestos. The ACM was categorized by type, location and quantity.

Additionally, accessible areas of the exterior of the site building were inspected to determine the location and estimated quantity of potential ACM.

Suspect ACM were grouped into homogenous areas. By definition a homogenous area is one in which the materials are evenly mixed and similar in appearance and texture throughout. The asbestos inspection was conducted in accordance with Massachusetts' regulations 453 CMR 6.00, AHERA guidelines and NESHAP regulations 29 CFR 1926.

The suspect ACM materials that were identified on materials from the site building were sent to ESML Analytical of Woburn, Massachusetts for analysis. The samples were analyzed for asbestos using polarized light microscopy (PLM) and dispersion staining techniques by EPA Method 600/R-93/116. The ACM testing results are presented below in Table 1. The correlating sample locations that are positive for ACM are shown on Figures 1 and 2.

Sample #	Description	Result	Estimated Quantity
1	Floor Mastic in Café Under Floor Tile	3% Chrysotile	15,000 SF
2	Levelastic in Café Under Sample #1	ND	NA
3	Metal to Metal Window Caulk in Café	ND	NA
4	Older Window Glaze in Café	2% Chrysotile	7 Windows
5A	Joint Compound in Store in Café	ND	NA
5B	Joint Compound in Store in Café	ND	NA
6A	Textured ceiling in the Hall Outside Café	ND	NA
6B	Textured ceiling in the Hall Outside Café	ND	NA

TABLE 1: ACM Testing Results

TABLE 1 (Continued)

Sample #	Description	Result	Estimated Quantity
7	Wallboard above Double Café Doors	ND	NA
8A	Spray Applied Fire Proofing Electrical Closet Outside Café	ND	NA
8B	Spray Applied Fire Proofing Electrical Closet Outside Café	ND	NA
9	12"x12" Floor Tile in Electrical Closet	2% Chrysotile	200 SF
10A	1" Hard Fitting on Fiberglass in Electrical Closet	ND	NA
10B	1" Hard Fitting on Fiberglass in Electrical Closet	ND	NA
11A	Steel Column Caulk to Window in Hall	ND	NA
11B	Steel Column Caulk to Window in Hall	ND	NA
12A	Window Glaze in Hall Outside Café	3% Chrysotile	4 Window Banks
12B	Window Glaze in Hall Outside Café	ND	NA
13A	Hard Fitting in Café off Fiberglass	ND	NA
13B	Hard Fitting in Café off Fiberglass	ND	NA
14A	Roof Drain Insulation in Café	ND	NA
14B	Roof Drain Insulation in Café	ND	NA
15A	Gray Duct Sealant in Café	ND	NA
15B	Gray Duct Sealant in Café	ND	NA
16A	Textured Ceiling in Café	ND	NA
16B	Textured Ceiling in Café	ND	NA
17	Cove Base in Café	ND	NA
18	Cove Base Glue in Café	ND	NA
19	Window Sill in Café	ND	NA
20	Window Glaze in Café/ Kitchen	3% Chrysotile	1 Window Bank
21	Door Caulk in Café/ Kitchen	ND	NA
22	Steel Column Caulk Wall	3% Chrysotile	5,000 LF
23	Window Panel Core in Café	ND	NA
24	Door Glaze in Gym	ND	NA

TABLE 1 (Continued)

Sample #	Description	Result	Estimated Quantity
25	9"x9" Floor Tile in Gym Fitness Area	3% Chrysotile	1,500 SF
26	Black Mastic in Gym	ND	NA
27	Black Fabric under Brick - Exterior	ND	NA
28	Joint Compound in Kitchen	ND	NA
29	Cove Base in Kitchen	ND	NA
30	Cove Base Glue in Kitchen	ND	NA
31	9"x9" Floor Tiles in Kitchen	5% Chrysotile	3,000 SF
32	Black Glue in Kitchen	ND	NA
33	Insulation Behind Metal Acoustical Tile in Kitchen	ND	NA
34	12"x12" Tan Floor Tile in Kitchen	ND	NA
35	12"x12" White Floor Tile in Kitchen	3% Chrysotile	Included in Quantity for #31
36	Black Mastic in Kitchen Under #35	10% Chrysotile	Included in Quantity for #31
37	Expansion Joint in Kitchen	ND	NA
38	Gray Duct Sealant in Kitchen	ND	NA
39	2'x2' SAT in Kitchen	ND	NA
40	Window Panel Core in Dining Room	ND	NA
41	Glue Tab in Boiler Room	20% Chrysotile	200 SF
42	Duct Cloth in Boiler Room	ND	NA
43	Duct Sealant in Boiler room	ND	NA
44	Glue Tab in Boiler Room	30% Chrysotile	Included in Quantity for # 41
45	Wall Tile Grout in Boys Locker Room	ND	NA
46	Glue in Boys locker room	ND	NA
47	Floor Coating in Boys locker room	ND	NA
48	Sheetrock in Boys locker room	ND	NA
49	Window Glaze in Gym	2% Chrysotile	20 Windows
50	2'x2' SAT in Boys locker room	ND	NA

TABLE 1 (Continued)

Sample #	Description	Result	Estimated Quantity
51	Sheetrock in Boys locker room	ND	NA
52	Hard Fitting in Boys locker room	ND	NA
53	Black Tar Paper Under Wood Floor in Gym	ND	NA
54	Yellow Carpet Glue in Library	ND	NA
55	Textured Ceiling in Library	ND	NA
56	2'x4' SAT in Library	ND	NA
57	12"x12" Floor Tile in Library	2% Chrysotile	3,500 SF
58	Black Mastic in Library Under 12" x 12"	10% Chrysotile	Included in Quantity for #57
59	Interior Window Glaze in Library	2% Chrysotile	4 Window Banks
60	Wall Plaster in Library	ND	NA
60-1	Wall Tile Grout in Hall Near Library	ND	NA
61	Joint Compound in Bathroom Near Library	ND	NA
62	Sheetrock in Bathroom Near Library	ND	NA
63	2'x2' SAT in Bathroom Near Library	ND	NA
64	Glue in Bathroom Near Library	ND	NA
65	Glaze in Classroom H-17	ND	NA
66	12"x12" Floor Tile in Classroom H-16	ND	NA
67	Black Mastic in Classroom H-16	ND	NA
68	Joint Compound in Classroom H-16	ND	NA
69	Cove Base in Classroom H-16	ND	NA
70	Cove Base Glue in Classroom H-16	ND	NA
71	Door Core in Classroom H-16	ND	NA
72	Glue Daub Behind White Board in Classroom H-16	ND	NA
73	Cabinet Top in Classroom H-16	ND	NA
74	Gray Sink Coating in Administrative Office	ND	NA
75	Joint Compound in Administrative Office	ND	NA

TABLE 1: ACM Testing Results (Continued)
--	---

Sample #	Description	Result	Estimated Quantity
76	Sheetrock in Administrative Office	ND	NA
77	Red duct sealant in Administrative Office copy room	ND	NA
78	Joint Compound in Administrative Office Copy Room	ND	NA
79	Sheetrock in Administrative Office copy Room	ND	NA
80	Gray Duct Sealant in Administrative Office Copy Room	ND	NA
81	Joint Compound in Administrative Office Copy Room	ND	NA
82	Pipe Insulation in Classroom H-10	ND	NA
83	Interior Window Caulk in Classroom H- 10	ND	NA
84	Back Mastic Under 9" x 9" Floor Tile in Classroom H-10	ND	NA
85	Peg Board in Classroom H-9	ND	NA
86	Caulk on Block Wall	3% Chrysotile	5,000 LF
87	Breeching Gasket in Boiler Room	ND	NA
88	Red Gasket in Boiler Room	ND	NA
89	White Gasket in Boiler Room	ND	NA
90	Door Frame Caulk in Classroom H-6	3% Chrysotile	Doors Throughout – 150 @ 25 LF each
91	Joint Compound in Classroom H-6	ND	NA
92	Sheetrock in Classroom H-6	ND	NA
93	Glaze in Classroom H-6	ND	NA
94A	Ceiling Plaster in Auditorium	ND	NA
94B	Ceiling Plaster in Auditorium	ND	NA
94C	Ceiling Plaster in Auditorium	ND	NA
95A	Wall Plaster in Auditorium	ND	NA
95B	Wall Plaster in Auditorium	ND	NA
95C	Wall Plaster in Auditorium	ND	NA
96	Black paper Under Stage in Auditorium	ND	NA

Sample #	Description	Result	Estimated Quantity
97	Column Caulk in the Main Hall Near Office	3% Chrysotile	Included in Quantity for #22
98	Sheetrock in Main Hall	ND	NA
99	Black Sink Coating in Photo Lab	ND	NA
100	Table Top in Photo lab	ND	NA
101A	2'x4' SAT in Photo lab	ND	NA
101B	2'x4' SAT in Photo lab	ND	NA
102	Black Sink Coating in Photo Lab	5% Chrysotile	50 each
103	Kiln Brick in Photo Lab	ND	NA
104	Carpet Glue in Main Office	ND	NA
105	Carpet Glue with Black in Main Office	ND	NA
106	Joint Compound- Wall of Main office	ND	NA
107	Joint Compound- Ceiling of Main office	ND	NA
108A	Black Glue Daub- On 1' x 1' Ceiling Tile Behind Stage	ND	NA
108B	Black Glue Daub- On 1' x 1' Ceiling Tile Behind Stage	ND	NA
109	1'x1' Acoustical Pin Dot Tile in Band Hall	ND	NA
110	Brown Glue Daub in Band Hall	ND	NA
111	1'x1' AT Pin Hole in Band Hall	ND	NA
112	12"x12" Floor Tiles in Band Hall	2% Chrysotile	10,500 SF
113	Black Mastic in Band Hall Under #112	5% Chrysotile	Included in Quantity for # 112
114	2'x4' SAT in Band Hall	ND	NA
115	Glue Daub Residue in Band Hall	ND	NA
116	Duct Sealant in furnace room	ND	NA
117	Metal to Metal caulk on Exterior Window	ND	NA
118	Caulk on Exterior Window	ND	NA

TABLE 1: ACM Testing Results (Continued)

TABLE 1: ACM Testing Results (Continued)
--

Sample #	Description	Result	Estimated Quantity
119	Corrugated Paper at Weep Holes on Exterior	ND	NA
120	Caulk on Exterior	ND	NA
121	Metal to Metal Caulk on Exterior	ND	NA
122	Caulk on Exterior Metal Roof to Brick	ND	NA
123	Caulk on Exterior Metal Roof to Brick	ND	NA
124	Joint Compound in Hall Near Maintenance Department	ND	NA
125	Sheetrock in Hall Near Maintenance Department	ND	NA
126	12"x12" Floor tiles in Hall Near Maintenance Department	2% Chrysotile	3,500 SF
127	Black Mastic in Hall Near Maintenance Department Under # 126	15% Chrysotile	Included in Quantity for # 126
128	Cove Base in Hall Near Maintenance Department	ND	NA
129	Cove Base Glue in Hall Near Maintenance Department	ND	NA
130	9"x9" Floor Tile in Boiler Room Landing	2% Chrysotile	13,400 SF
131	Black Mastic in Boiler Room Landing Under # 130	10% Chrysotile	Included in Quantity for #130
132	12"x12" Floor Tiles in Hall Near Chorus/Graphics	ND	NA
133	Black Mastic in Hall Near Chorus/Graphics	ND	NA
134	Grout in Hall Near Math Classrooms	ND	NA
135	Caulk in Hall on Steel Column Near Math Classrooms	ND	NA
136	Joint Compound in Hall Near Math Classrooms	ND	NA
137	Interior Hall Window Glaze	2% Chrysotile	Windows Throughout - 250 each
138	Interior Hall Window Glaze	5% Chrysotile	Included in Quantity for #137

Sample #	Description	Result	Estimated Quantity
139	Brown Spray Applied Fire Proofing Above Ceiling	ND	NA
140	Ceramic Tile Glue in Hall Near Foreign Language	ND	NA
141	12"x12" Floor Tile in L2	5% Chrysotile	12,500 SF
142	Black Mastic in L2 Under #141	10% Chrysotile	Included in Quantity for #141
143	Black Countertop in Science classroom	ND	NA
144	Hard Fitting in Science Storage Room	20% Chrysotile	Throughout – 2,000 each
145	Black Material Behind Concrete Block on the Exterior	10% Chrysotile	75,000 SF
146	Black Windowsill LL Gym Ramp	ND	NA
147	Spray applied fire proofing in LL Gym Ramp	ND	NA
148	12"x12" Red Tile in LL Gym Hall	ND	NA
149	Black Mastic in LL Gym Hall Under #148	ND	NA
	Walk in Refrigerator and Freezer Coating	Assumed	4 each
	Hidden Pipe Insulation	Assumed	2,000 LF
	Lab Hoods	Assumed	8 each
	Fire Doors	Assumed	50 each
	Subsurface Transite Pipe	Assumed	2,000 LF
	Hidden Transite Panels	Assumed	10,000 SF
	Dry Transformer Lining	Assumed	30 each
	Fire Curtain	Assumed	1 each

TABLE 1: ACM Testing Results (Continued)

Sample #	Description	Result	Estimated Quantity
1	Roof Core – Auditorium Building	ND	NA
2	Roof Core – Auditorium Building	5% Chrysotile	20,000 SF
3	Roof Fabric	ND	NA
4	Roof Curb	ND	NA
5	Roof Core and Tectum	ND	NA
6	Roof Core	ND	NA
7	Back Corner Deck of Roof	ND	NA
8	Back Corner Deck of Roof	ND	NA
9	Roof Core	ND	NA
10	No Sample	-	-
11	Core of Top of Library	ND	NA
12	Core of Main Office	ND	NA
13	Core of Main Office	ND	NA
14	Core of Main Office	ND	NA
15	Core of Steel Braced Gym	ND	NA
16	Core Curb of LL Gym	ND	NA
17A	Curb of LL Gym	ND	NA
17B	Curb of LL Gym	ND	NA
18	Curb of Door # 56	ND	NA
19	Curb of Door # 56	10% Chrysotile	20,000 SF
20	Styrofoam in Main Entrance Roof	ND	NA
21	Styrofoam in Split face L Building Block	ND	NA
22	Styrofoam in Door 14	ND	NA
23	Styrofoam in Door 52	ND	NA
24	Roof of Door 03	ND	NA
25	Door 56 Kitchen Roof	ND	NA
26	Door 12 S Building Roof	ND	NA
27	Wall Insulation in Door 36	ND	NA

TABLE 2:	ACM Testir	ng Results Roo	of and Exterior

Sample #	Description	Result	Estimated Quantity
28	Flashing at Foundation of Exterior	ND	NA
29	Flashing over Windows and Doors	ND	NA

TABLE 2: ACM Testing Results Roof and Exterior

ND = Not Detected NA = Not Applicable SF = Square Feet LF = Linear Feet

A copy of the asbestos laboratory analytical report is provided in Appendix A. The ACM sample locations are shown on Figure 1.

Suspect Lead-Based Paint

CDW collected samples from 20 painted areas throughout the site building. Ten of the samples contained lead above laboratory detection limits. The laboratory results of lead analysis are summarized in Table 3. A copy of the lead paint laboratory report is provided in Appendix B.

Sample #	Description	Result % Weight
LPB-1	Boiler Room Floor – Gray Paint	0.016
LPB-2	Boys Locker Room Wall – Beige Paint	0.068
LPB-3	Gym Upper Door – Red Paint	0.025
LPB-4	Library Column – Yellow Paint	0.061
LPB-5	Classroom H-16 Wall – White Paint	<0.01
LPB-6	Classroom H-10 Beam – Blue Paint	0.10
LPB-7	Classroom H-9 Wall – Pink Paint	0.028
LPB-8	Stage Wall - Black Paint	<0.01
LPB-9	Main Office Window Frame – Brown Paint	<0.01
LPB-10	Furnace Room Floor - Gray Paint	0.018
LPB-11	Furnace Room Wall – White Paint	0.029
LPB-12	Outside Radio Room Wall – White Paint	<0.01
LPB-13	Hall Column – Green Paint	7.9
LPB-14	Kitchen Window Panel – Pink Paint	<0.01

 TABLE 3: Lead-Based Paint Testing Results

Sample #	Description	Result % Weight
LPB-15	Kitchen Window Column – Blue Paint	<0.01
LPB-16	Gym Wall Ramp Hand Rail – White Paint	<0.01
LPB-17	LL Gym Hall – White Paint	<0.01
LPB-18	LL Gym Hall – Red Paint	<0.01
LPB-19	Café Steel Frame – Red Paint	0.14
LPB-20	Admin Office Wall – Pink Paint	<0.01

TABLE 3: Lead-Based Paint Testing Results (Continued)

Based upon the elevated lead content in the green paint in the hall columns, a sample should be collected for Toxicity Characteristic Leaching Procedure (TCLP) to determine if there are any there are special hazardous waste disposal requirements.

Suspect PCB Containing Materials

Certain joint caulking used as part of standard construction practices for masonry buildings and concrete structures erected between the 1950's and late 1970's is known to have been manufactured with PCBs. The EPA mandates caulking present at concentrations >50 parts per million must be removed under a PCB abatement Plan. CDW collected 10 samples of caulking/expansion joints that may contain PCB compounds. The laboratory results of the PCB study is presented below:

TABLE 4. I CD Analytical Results				
Description	Description	Result (mg/kg)		
PCB-1	Exterior Double Door Frame Caulk	<1.5		
PCB-2	Interior Window Caulk to Sheet Rock	0.89		
PCB-3	Column Caulk at Main Hall/Office	6.1		
PCB-4	Exterior Door Caulk by Door #7	<1.5		
PCB-5	Exterior Caulk on CMC Block	<0.33		
PCB-6	Caulk @ Steel Column in Hallway	10		
PCB-7	Interior Window Frame Caulk	<0.3		

TABLE 4: PCB Analytical Results

Description	Description	Result (mg/kg)
PCB-8	Caulk @ Roofline	<0.3
PCB-9	Exterior Expansion Joint	<0.3
PCB-10	Exterior Window Caulk	0.56

TABLE 4: PCB Analytical Results (Continued)

Caulk collected from interior locations (PCB-3 and PCB-6) contain total PCBs at concentrations above the 1 parts per million (ppm) standard for adjacent building materials (remediation waste in accordance with §761.61 (c)). The caulking, if removed, does not need to be disposed of as a PCB regulated waste; however the substrates (brick, metal) should be tested to ensure these do not contain PCBs at concentrations at or above 1 ppm. The PCB analytical report is provided in Appendix C.

Suspect Mercury Containing Materials

Mercury has been known to be used as a plasticizer in the manufacturing of rubber floors, mats and stair treads. Mercury has been historically detected in gym floors manufactured by 3M (Tartan® Brand). CDW personnel collected six samples of rubber flooring materials suspected to contain mercury compounds. The samples were analyzed by Phoenix Environmental Laboratories, inc. of Manchester Connecticut. The samples were analyzed for mercury using EPA Method 600/4-79-019. The mercury testing results are presented below.

Description	Description	Result (mg/kg)
HG-1	Rubber Stair Tread	<0.06
HG-2	Rubber Stair Ramp Flooring	<0.06
HG-3	Floor Mat at Exit Door #3	<0.08
HG-4	Ramp Radio Room	<0.07
HG-5	LL Gym Floor	33.9
HG-6	Ramp Hall to LL Gym	0.43

TABLE 5: Mercury Analytical Results

Based upon the positive mercury content in the gym floor, the floor should be tested for TCLP to determine if there are special hazardous waste disposal requirements. Furthermore, the United States Environmental Protection Agency (USEPA) recommends, in schools, conducting baseline mercury vapor testing of the air to determine if mercury vapors are being released and at what concentrations. The mercury analytical report is provided in Appendix D.

Other Hazardous Materials

Throughout the project Site, CDW identified approximately 800 fluorescent light ballasts, 30 small interior wall mounted transformers which are suspect PCB-containing. Fluorescent bulbs contain mercury and should be disposed of properly prior to demolition. Approximately 3,000 fluorescent bulbs were identified throughout the project Site. Compact florescent bulbs also contain mercury and were noted periodically throughout. Items potentially contning lead include approximately 50 emergency light batteries. Other mercury containing items identified include thermostats and switches in the boiler room(s), mercury compounds in laboratory chemicals, and possible mercury in science sink traps. Laboratory chemicals for the science classrooms were observed in a locked central storage room. A flammable storage cabinet and an acid storage cabinet were also observed in the storage room. Other potential hazardous materials noted is film developing chemicals, ceramic glazes, paints, etc., in the visual arts classrooms (including photography and ceramics) and the woodworking classroom. Other hazardous materials for the Site are identified in the Phase I Preliminary Site Assessment (dated May 2011).

Recommendations

Based on the results of the hazardous materials survey, we have the following recommendations:

- Remove each ACM identified prior to construction work activities by a Massachusetts licensed asbestos abatement contractor, and dispose of ACM at an appropriate hazardous non-recycling landfill facility.
- Building materials that tested below one percent asbestos, with the exceptions noted, may be removed and disposed of as regular construction debris.
- Remove or segregate damaged lead-based paint or lead-based paint components for TCLP composite testing in areas slated for demolition in compliance with OSHA lead in construction standards. Furthermore, contractors must comply with EPA's RRP Rule 40 CFR 745.
- Conduct a PCB sampling of brick and metal substrates in areas of elevated PCB concentrations >1 ppm to determine if the substrates meet the EPA criteria for unrestricted use.
- Conduct TCLP sampling of the green column paint to determine if there are special hazardous waste handling requirements.
- Conduct TCLP sampling of the rubber gym floor to determine if there are special hazardous waste handling requirements.
- Conduct air sampling within the area of the mercury containing gym floor in accordance with EPA guidelines to determine if vapors are present.

• CDW recommends that other hazardous materials and items containing hazardous materials be recycled or removed and disposed of appropriately.

Limitations

The conclusions and recommendations are limited to the information available at the time of the field survey and the scope of services as defined. No subsurface soil or groundwater testing was performed. Where access to portions of the Site or to structures on the site was unavailable or limited, CDW renders no opinion as to the presence of hazardous material or the presence of indirect evidence related to hazardous material in that portion of the site or structure. The testing performed forms the basis for conclusions expressed and areas inaccessible for testing limits those conclusions. No other conclusions, interpretations or recommendations are contained or implied in this report other than those expressed. No other use of this report is warranted without the written consent of CDW Consultants, Inc.

CDW appreciates the opportunity to provide our services for your project.

Very truly yours,

CDW CONSULTANTS, INC.

Jura Coheler

Susan Cahalan, P.G. Project Manager

TABLES	Table 1:	Summary of Asbestos Analytical Results
	Table 2:	Summary of Asbestos Analytical Results - Roof and Exterior
	Table 3:	Summary of Lead Paint Analytical Results
	Table 4:	Summary of PCB Analytical Results
	Table 5:	Summary of Mercury Analytical Results

FIGURE Figures 1: ACM, Paint, PCB and Mercury Sample Locations

APPENDICES

- Appendix A: Asbestos Sample Laboratory Reports
- Appendix B: Lead Paint Sample Laboratory Report
- Appendix C: PCB Sample Laboratory Report
- Appendix D: Mercury Sample Laboratory Report

Figures

Appendix A

Asbestos Identification Laboratory

165U New Boston St., Ste 271 Woburn, MA. 01801 Bulk Asbestos Analysis by Polarized Light Microscopy EPA Method: 600/R-93/116

Asbestos Consultants 61 Unity Avenue Belmont, MA 02478 Suite/Apt

Batch 850

Dear Ed Morgan, The following correspondence contains two communications:

- 1. Results of Asbestos project Concord-Carlisle HS
- 2. Billing Invoice.

The information and analysis contained in this report have been generated using the EPA /600/R-93/116 Method for the Determination of Asbestos in Bulk Building Materials. Materials or products that contain more than 1% of any kind or combination of asbestos are considered an asbestos containing building material as determined by the EPA. This Polarized Light Microscope (PLM) technique may be performed either by visual estimation or point counting. Point counting provides a determination of the area percentage of asbestos in a sample. If the asbestos is estimated to be less than 10% by visual estimation of friable material, the determination may be repeated using the point counting technique. The results of the point counting supersede visual PLM results. Results in this report only relate to the items tested. This report may not be used by the customer to claim product endorsement by NVLAP or any other U.S. Government Agency.

- NVLAP Lab Code: 200919-0
- Massachusetts Certification License: AA000208
- State of Connecticut, Department of Public Health Approved Environmental Laboratory Registration# PH-0142
- State of Maine, Department of Environmental Protection Asbestos Analytical Laboratory License Number LB-0078(Bulk) LA-0087(Air)

Page 1 of 11

Asbestos Identification Laboratory

165U New Boston St., Ste 271 Woburn, MA. 01801 Bulk Asbestos Analysis by Polarized Light Microscopy EPA Method: 600/R-93/116

Results for Client Project: Concord-Carlisle HS, Batch# 850

Work Received: 4/25/2011

Date Sampled: 4/19/2011

Results Sent: 5/2/2011 2:23:47 PM

<u>Field_ID: 1 Material: mastic Color: Black Location: café Sample# 14093 CEL=007 NON=090 ASBESTOS</u> <u>DETECTED CHR=003</u>

Field ID: 2 Material: levelastic Color: Gray Location: café Sample# 14094 CEL=010 NON=090 None Detected

Field ID: 3 Material: metal to metal caulk Color: Gray Location: café Sample# 14095 NON=100 None Detected

Field_ID: 4 Material: glaze Color: Gray Location: café Sample# 14096 NON=098 ASBESTOS DETECTED CHR=002

Field ID: 5A Material: stove- JC Color: White Location: café Sample# 14097 NON=100 None Detected

Field_ID: 5B Material: stove- JC Color: White Location: café Sample# 14098 NON=100 None Detected

Field_ID: 6A Material: textured ceiling Color: White Location: hall Sample# 14099 MNW=020 NON=080 None Detected

<u>Field_ID: 6B Material: textured ceiling Color: White Location: hall Sample# 14100 MNW=015 NON=085 None</u> Detected

Field_ID: 7 Material: wall Color: Multi Location: above Sample# 14101 NON=100 None Detected

Field_ID: 8A Material: spray applied fire proofing Color: Gray Location: hall Sample# 14102 MNW=065 NON=035 None Detected

Field_ID: 8B Material: spray applied fire proofing Color: Gray Location: hall Sample# 14103 MNW=070 NON=030 None Detected

Field_ID: 9 Material: 12 x 12 floor tile Color: White Location: elec closet Sample# 14104 NON=098 ASBESTOS DETECTED CHR=002

Field_ID: 10A Material: hard fitting Color: Gray Location: elec closet Sample# 14105 MNW=030 CEL=005 NON=065 None Detected

Field_ID: 10B Material: hard fitting Color: Gray Location: elec closet Sample# 14106 MNW=040 CEL=005 NON=055 None Detected

Field_ID: 11A Material: caulk Color: Brown Location: hall Sample# 14107 NON=100 None Detected

Field_ID: 11B Material: caulk Color: Brown Location: hall Sample# 14108 NON=100 None Detected

Field_ID: 12A Material: window glaze Color: Black Location: hall Sample# 14109 NON=097 ASBESTOS DETECTED CHR=003

Field ID: 12B Material: window glaze Color: Black Location: hall Sample# 14110 NON=100 None Detected

Field_ID: 13A Material: hard fitting Color: Gray Location: café Sample# 14111 MNW=035 CEL=005 NON=060 None Detected

Field_ID: 13B Material: hard fitting Color: Gray Location: café Sample# 14112 MNW=035 CEL=005 NON=060 None Detected

Field ID: 14A Material: roof drain Color: Gray Location: café Sample# 14113 MNW=045 NON=055 None Detected

Field_ID: 14B Material: roof drain Color: Gray Location: café Sample# 14114 MNW=040 CEL=010 NON=050 None Detected

Field ID: 15A Material: Duct sealant Color: Gray Location: café Sample# 14115 NON=100 None Detected

Field ID: 15B Material: Duct sealant Color: Gray Location: café Sample# 14116 NON=100 None Detected

Field_ID: 16A Material: textured ceiling Color: Multi Location: café Sample# 14117 CEL=070 NON=030 None Detected

Field_ID: 16B Material: textured ceiling Color: Multi Location: café Sample# 14118 CEL=070 NON=030 None Detected

Field ID: 5C Material: Joint Compound Color: White Location: café Sample# 14119 NON=100 None Detected

Field ID: 17 Material: Cove base Color: Gray Location: café Sample# 14120 NON=100 None Detected

Field ID: 18 Material: Cove base glue Color: Tan Location: café Sample# 14121 NON=100 None Detected

Field ID: 19 Material: window sill Color: Multi Location: café Sample# 14122 CEL=040 NON=060 None Detected

Field_ID: 20 Material: wndow glaze Color: Gray Location: café/kitchen Sample# 14123 NON=097 ASBESTOS DETECTED CHR=003

Field ID: 21 Material: door caulk Color: Gray Location: café/kitchen Sample# 14124 NON=100 None Detected

<u>Field_ID: 22 Material: caulk Color: Brown Location: wall Sample# 14125 NON=097 ASBESTOS DETECTED</u> <u>CHR=003</u>

Field_ID: 23 Material: window panel cove Color: Brown Location: café Sample# 14126 CEL=075 NON=025 None Detected

Field_ID: 24 Material: door glaze Color: Gray Location: Gym Sample# 14127 NON=100 None Detected

Field_ID: 25 Material: 9X9 floor tile Color: Gray Location: Gym Sample# 14128 NON=097 ASBESTOS DETECTED CHR=003

Field_ID: 26 Material: black mastic Color: Black Location: Gym Sample# 14129 NON=100 None Detected

Field_ID: 27 Material: black fabric under brick Color: Black Location: exterior Sample# 14130FBG=060 NON=040 None Detected Field ID: 28 Material: Joint Compound Color: White Location: kitchen Sample# 14131 NON=100 None Detected

Field ID: 29 Material: cove base Color: Gray Location: kitchen Sample# 14132 NON=100 None Detected

Field ID: 30 Material: Cove base glue Color: Yellow Location: kitchen Sample# 14133 NON=100 None Detected

<u>Field_ID: 31 Material: 9X9 floor tile Color: Gray Location: kitchen Sample# 14134 NON=095 ASBESTOS</u> DETECTED CHR=005

Field ID: 32 Material: black glue Color: Black Location: kitchen Sample# 14135 NON=100 None Detected

Field_ID: 33 Material: metal pan insulation Color: Brown Location: kitchen Sample# 14136 MNW=090 NON=010 None Detected

Field ID: 34 Material: 12 x 12 floor tile Color: Brown Location: kitchen Sample# 14137 NON=100 None Detected

Field_ID: 35 Material: 12 x 12 white floor tile Color: White Location: kitchen Sample# 14138 NON=097 ASBESTOS DETECTED CHR=003

Field_ID: 36 Material: black mastic Color: Black Location: kitchen Sample# 14139 NON=090 ASBESTOS DETECTED CHR=010

Field ID: 37 Material: expansion joint Color: White Location: kitchen Sample# 14140 NON=100 None Detected

Field ID: 38 Material: Duct sealant Color: Gray Location: kitchen Sample# 14141 NON=100 None Detected

Field_ID: 39 Material: 2 x 2 SAT Color: Gray Location: kitchen Sample# 14142 MNW=030 CEL=060 NON=010 None Detected

Field_ID: 40 Material: window panel cove Color: Brown Location: dinning room Sample# 14143 CEL=090 NON=010 None Detected

<u>Field_ID: 41 Material: glue tab Color: Brown Location: boiler room Sample# 14144 NON=080 ASBESTOS</u> DETECTED CHR=020

Field_ID: 42 Material: duct cloth Color: Gray Location: boiler room Sample# 14145 MNW=020 CEL=070 NON=010 None Detected

Field_ID: 43 Material: Duct sealant Color: Gray Location: boiler room Sample# 14146 NON=100 None Detected

Field_ID: 44 Material: glue tab Color: Brown Location: boiler room Sample# 14147 NON=070 ASBESTOS DETECTED CHR=030

Field ID: 45 Material: wall tile grout Color: Tan Location: Boys locker room Sample# 14148 NON=100 None Detected

Field_ID: 46 Material: glue Color: Gray Location: Boys locker room Sample# 14149 NON=100 None Detected

Field_ID: 47 Material: flr coating Color: Multi Location: Boys locker room Sample# 14150 NON=100 None Detected

Field_ID: 48 Material: Sheetrock Color: Gray Location: Boys locker room Sample# 14151 CEL=015 NON=085 None Detected Field_ID: 49 Material: glaze Color: White Location: gym Sample# 14152 NON=098 ASBESTOS DETECTED CHR=002

Field_ID: 50 Material: 2x2 SAT Color: Gray Location: Boys locker room Sample# 14153 MNW=045 CEL=045 NON=010 None Detected

Field_ID: 51 Material: Sheetrock Color: Gray Location: Boys locker room Sample# 14154 CEL=020 NON=080 None Detected

Field_ID: 52 Material: hard fitting Color: Gray Location: Boys locker room Sample# 14155 MNW=040 CEL=005 NON=055 None Detected

Field_ID: 53 Material: black tar paper Color: Black Location: gym Sample# 14156 CEL=075 NON=025 None Detected

Field ID: 54 Material: carpet glue Color: Tan Location: library Sample# 14157 CEL=010 NON=090 None Detected

Field_ID: 55 Material: textured ceiling Color: White Location: library Sample# 14158 MNW=020 NON=080 None Detected

Field ID: 56 Material: 2x4 SAT Color: Gray Location: library Sample# 14159 MNW=090 NON=010 None Detected

Field ID: 57 Material: 12 x 12 floor tile Color: Tan Location: library Sample# 14160 NON=098 ASBESTOS DETECTED CHR=002

<u>Field_ID: 58 Material: black mastic Color: Black Location: library Sample# 14161 NON=090 ASBESTOS</u> DETECTED CHR=010

Field ID: 60 Material: wall plaster Color: Multi Location: library Sample# 14162 NON=100 None Detected

Field ID: 60.1 Material: wall tile grout Color: Tan Location: hall Sample# 14163 NON=100 None Detected

Field ID: 61 Material: Joint Compound Color: White Location: bathroom Sample# 14164 NON=100 None Detected

<u>Field_ID: 62 Material: Sheetrock Color: Gray Location: bathroom Sample# 14165 CEL=020 NON=080 None Detected</u> <u>Field_ID: 63 Material: 2x2 SAT Color: Gray Location: bathroom Sample# 14166 MNW=040 CEL=040 NON=020</u> <u>None Detected</u>

Field ID: 64 Material: glue Color: White Location: bathroom Sample# 14167 NON=100 None Detected

Field ID: 65 Material: glaze Color: Black Location: clsrm H-17 Sample# 14168 NON=100 None Detected

Field ID: 66 Material: 12x12 floor tile Color: Green Location: clsrm H-16 Sample# 14169 NON=100 None Detected

Field_ID: 67 Material: black mastic Color: Black Location: clsrm H-16 Sample# 14170 CEL=002 NON=098 None Detected

Field ID: 68 Material: Joint Compound Color: White Location: clsrm H-16 Sample# 14171 NON=100 None Detected

Field ID: 69 Material: cove base Color: Black Location: clsrm H-16 Sample# 14172 NON=100 None Detected

Field ID: 70 Material: Cove base glue Color: Tan Location: clsrm H-16 Sample# 14173 NON=100 None Detected

Field_ID: 71 Material: door cove Color: Brown Location: clsrm H-16 Sample# 14174 CEL=095 NON=005 None Detected

Field_ID: 72 Material: glue daub behind white board Color: Brown Location: clsrm H-16 Sample# 14175 NON=100 None Detected

Field_ID: 73 Material: cabinet top Color: Multi Location: clsrm H-16 Sample# 14176 CEL=035 NON=065 None Detected

Field_ID: 74 Material: gray sink coating Color: Gray Location: admin office Sample# 14177 CEL=015 NON=085 None Detected

Field ID: 75 Material: Joint Compound Color: White Location: admin office Sample# 14178 NON=100 None Detected

Field_ID: 76 Material: Sheetrock Color: Gray Location: admin office Sample# 14179 CEL=015 NON=085 None Detected

Field_ID: 77 Material: red duct sealant Color: Red Location: admin office copy room Sample# 14180 NON=100 None Detected

Field_ID: 78 Material: Joint Compound Color: White Location: admin office copy room Sample# 14181 NON=100 None Detected

Field_ID: 79 Material: Sheetrock Color: Gray Location: admin office copy room Sample# 14182 CEL=015 NON=085 None Detected

<u>Field_ID: 80 Material: gray duct sealant Color: Gray Location: admin office copy room Sample# 14183 NON=100</u> None Detected

Field_ID: 81 Material: Joint Compound Color: White Location: admin office copy room Sample# 14184 NON=100 None Detected

Field ID: 82 Material: PI Color: Black Location: clsrm H-10 Sample# 14185 NON=100 None Detected

Field ID: 83 Material: caulk Color: White Location: clsrm H-10 Sample# 14186 NON=100 None Detected

Field ID: 84 Material: black mastic Color: Black Location: clsrm H-10 Sample# 14187 NON=100 None Detected

Field_ID: 85 Material: peg board Color: Brown Location: clsrm H-9 Sample# 14188 CEL=098 NON=002 None Detected

Field_ID: 86 Material: caulk Color: Brown Location: wall Sample# 14189 NON=097 ASBESTOS DETECTED CHR=003

Field_ID: 87 Material: breeching gasket Color: Multi Location: boiler room Sample# 14190FBG=098 NON=002 None Detected

Field_ID: 88 Material: red gasket Color: Red Location: boiler room Sample# 14191 NON=100 None Detected

Field_ID: 89 Material: white gasket Color: White Location: boiler room Sample# 14192 CEL=095 NON=005 None Detected Field_ID: 90 Material: caulk Color: Brown Location: clsrm H-6 Sample# 14193 NON=097 ASBESTOS DETECTED CHR=003

Field_ID: 91 Material: Joint Compound Color: White Location: clsrm H-6 Sample# 14194 NON=100 None Detected

Field ID: 92 Material: Sheetrock Color: Gray Location: clsrm H-6 Sample# 14195 CEL=015 NON=085 None Detected

Field ID: 93 Material: glaze Color: Gray Location: clsrm H-6 Sample# 14196 NON=100 None Detected

Field ID: 94A Material: ceiling plaster Color: Multi Location: Auditorium Sample# 14197 NON=100 None Detected

Field ID: 94B Material: ceiling plaster Color: Multi Location: Auditorium Sample# 14198 NON=100 None Detected

Field ID: 94C Material: ceiling plaster Color: Multi Location: Auditorium Sample# 14199 NON=100 None Detected

Field ID: 95A Material: wall plaster Color: Multi Location: Auditorium Sample# 14200 NON=100 None Detected

Field ID: 95B Material: wall plaster Color: Multi Location: Auditorium Sample# 14201 NON=100 None Detected

Field ID: 95C Material: wall plaster Color: Multi Location: Auditorium Sample# 14202 NON=100 None Detected

Field_ID: 96 Material: black paper under stage Color: Multi Location: Auditorium Sample# 14203 CEL=095 NON=005 None Detected

<u>Field_ID: 97 Material: caulk Color: Tan Location: main hall Sample# 14204 NON=097 ASBESTOS DETECTED</u> CHR=003

Field ID: 98 Material: Sheetrock Color: Gray Location: main hall Sample# 14205 CEL=015 NON=085 None Detected

Field ID: 99 Material: black sink coating Color: Black Location: Photo lab Sample# 14206 NON=100 None Detected

Field ID: 100 Material: table top Color: Multi Location: Photo lab Sample# 14207 CEL=070 NON=030 None Detected

Field_ID: 101A Material: 2x4 SAT Color: Gray Location: Photo lab Sample# 14208 MNW=030 CEL=060 NON=010 None Detected

<u>Field_ID: 101B Material: 2x4 SAT Color: Gray Location: Photo lab Sample# 14209 MNW=030 CEL=060 NON=010</u> None Detected

Field ID: 102 Material: black sink coating Color: Black Location: Photo lab Sample# 14210 NON=095 ASBESTOS DETECTED CHR=005

Field ID: 103 Material: kiln brick Color: Tan Location: Photo lab Sample# 14211 NON=100 None Detected

<u>Field_ID: 104 Material: carpet glue Color: Tan Location: main office Sample# 14212 CEL=002 NON=098 None</u> Detected

Field_ID: 105 Material: carpet glue w/ black Color: Multi Location: main office Sample# 14213 NON=100 None Detected

Field_ID: 106 Material: Joint compound- wall Color: White Location: main office Sample# 14214 NON=100 None Detected

Field_ID: 107 Material: Joint compound-ceiling Color: White Location: main office Sample# 14215 NON=100 None Detected

Field_ID: 108A Material: black glue daub Color: Black Location: behind stage Sample# 14216 NON=100 None Detected

Field_ID: 108B Material: black glue daub Color: Black Location: behind stage Sample# 14217 NON=100 None Detected

Field_ID: 109 Material: 1X1 AT Color: Gray Location: band hall Sample# 14218 MNW=030 CEL=060 NON=010 None Detected

Field_ID: 110 Material: brown glue daub Color: Brown Location: band hall Sample# 14219 OTH=003 NON=097 None Detected

Field_ID: 111 Material: 1X1 AT Color: Brown Location: band hall Sample# 14220 CEL=095 NON=005 None Detected

<u>Field_ID: 112 Material: 12 x 12 floor tile Color: White Location: band hall Sample# 14221 NON=098 ASBESTOS</u> DETECTED CHR=002

Field ID: 113 Material: black mastic Color: Black Location: band hall Sample# 14222 NON=095 ASBESTOS DETECTED CHR=005

Field_ID: 114 Material: 2x4 SAT Color: Gray Location: band hall Sample# 14223 MNW=020 CEL=070 NON=010 None Detected

Field_ID: 115 Material: glue daub residue Color: Brown Location: band hall Sample# 14224 OTH=002 NON=098 None Detected

Field ID: 116 Material: duct sealant Color: Gray Location: furnance room Sample# 14225 NON=100 None Detected

Field_ID: 117 Material: metal-to-metal caulk Color: Gray Location: exterior window Sample# 14226 NON=100 None Detected

Field ID: 118 Material: caulk Color: Tan Location: exterior window Sample# 14227 NON=100 None Detected

Field ID: 119 Material: paper Color: White Location: exterior Sample# 14228 SYN=080 NON=020 None Detected

Field ID: 120 Material: caulk Color: Gray Location: exterior Sample# 14229 NON=100 None Detected

Field_ID: 121 Material: metal-to-metal caulk Color: Brown Location: exterior Sample# 14230 NON=100 None Detected

Field ID: 122 Material: caulk Color: Brown Location: exterior Sample# 14231 NON=100 None Detected

Field ID: 123 Material: caulk Color: Brown Location: exterior Sample# 14232 NON=100 None Detected

Field ID: 124 Material: Joint compound Color: White Location: hall Sample# 14233 NON=100 None Detected

Field ID: 125 Material: Sheetrock Color: Gray Location: hall Sample# 14234 CEL=015 NON=085 None Detected

Field_ID: 126 Material: 12x12 floor tile Color: Tan Location: hall Sample# 14235 NON=098 ASBESTOS DETECTED CHR=002

<u>Field_ID: 127 Material: black mastic Color: Black Location: hall Sample# 14236 NON=085 ASBESTOS DETECTED</u> CHR=015

Field ID: 128 Material: cove base Color: Multi Location: hall Sample# 14237 NON=100 None Detected

Field ID: 129 Material: Cove base glue Color: Tan Location: hall Sample# 14238 NON=100 None Detected

Field_ID: 130 Material: 9X9 floor tile Color: Brown Location: boiler room landing Sample# 14239 NON=098 ASBESTOS DETECTED CHR=002

<u>Field_ID: 131 Material: black mastic Color: Black Location: boiler room landing Sample# 14240 NON=090</u> ASBESTOS DETECTED CHR=010

Field ID: 132 Material: 12 x 12 floor tile Color: Black Location: hall Sample# 14241 NON=100 None Detected

Field ID: 133 Material: black mastic Color: Black Location: hall Sample# 14242 CEL=010 NON=090 None Detected

Field ID: 134 Material: grout Color: Tan Location: hall Sample# 14243 NON=100 None Detected

Field_ID: 135 Material: caulk Color: Tan Location: hall Sample# 14244 NON=095 ASBESTOS DETECTED CHR=005

Field_ID: 136 Material: Joint compound Color: White Location: hall Sample# 14245 NON=100 None Detected Field_ID: 137 Material: glaze Color: Gray Location: at 5.21 Sample# 14246 NON=098 ASBESTOS DETECTED CHR=002

Field_ID: 138 Material: glaze Color: Black Location: at 5.30 Sample# 14247 NON=095 ASBESTOS DETECTED CHR=005

<u>Field_ID: 139 Material: brown spray applied fire proofing Color: Tan Location: above ceiling Sample# 14248</u> CEL=098 NON=002 None Detected

Field ID: 140 Material: glue Color: Multi Location: hall Sample# 14249 NON=100 None Detected

Field_ID: 141 Material: 12x12 floor tile Color: Tan Location: L2 Sample# 14250 NON=095 ASBESTOS DETECTED CHR=005

<u>Field_ID: 142 Material: black mastic Color: Black Location: L2 Sample# 14251 NON=090 ASBESTOS DETECTED</u> CHR=010

Field_ID: 143 Material: black counter top Color: Black Location: science clsrm Sample# 14252 NON=100 None Detected

Field ID: 144 Material: hard fitting Color: Gray Location: Science storage room Sample# 14253 MNW=030 CEL=005 NON=045 ASBESTOS DETECTED CHR=020

Field_ID: 59 Material: Interior window glaze Color: Gray Location: library Sample# 14254 NON=098 ASBESTOS DETECTED CHR=002

End of Report

Legend (All sample results represent percentages EX: 001 = 1%) TR(Trace) = < 1% Asbestos Minerals: Chrysotile=CHR, Amosite=AMO, Crocidolite=CRO, Actinolite=ACT, Tremolite=TRE, Anthophylite=ANT Fibrous Materials: Fiberglass=FBG, Mineral Wood=MNW, Cellulose=CEL, Hair=HAR, Synthetic=SYN, Other=OTH, Non-Fibrous=NON

Asbestos Identification Laboratory 165U New Boston St., Ste 271 Woburn, MA. 01801 Bulk Asbestos Analysis by Polarized Light Microscopy EPA Method: 600/R-93/116

Sample ID	Lab ID	Material	Sample Location	Analytical Results
1	14093	mastic	café	Chrysotile=3%
2	14094	levelastic	café	No Asbestos Detected
3	14095	metal to metal caulk	café	No Asbestos Detected
4	14096	glaze	café	Chrysotile=2%
5A	14097	stove- JC	café	No Asbestos Detected
5B	14098	stove- JC	café	No Asbestos Detected
6A	14099	textured ceiling	hall	No Asbestos Detected
6B	14100	textured ceiling	hall	No Asbestos Detected
7	14101	wall	above	No Asbestos Detected
8A	14102	spray applied fire proofing	hall	No Asbestos Detected
8B	14103	spray applied fire proofing	hall	No Asbestos Detected
9	14104	12 x 12 floor tile	elec closet	Chrysotile=2%
10A	14105	hard fitting	elec closet	No Asbestos Detected
10B	14106	hard fitting	elec closet	No Asbestos Detected
11A	14107	caulk	hall	No Asbestos Detected
11B	14108	caulk	hall	No Asbestos Detected
12A	14109	window glaze	hall	Chrysotile=3%
12B	14110	window glaze	hall	No Asbestos Detected
13A	14111	hard fitting	café	No Asbestos Detected

Asbestos Identification Laboratory 165U New Boston St., Ste 271 Woburn, MA. 01801 Bulk Asbestos Analysis by Polarized Light Microscopy EPA Method: 600/R-93/116

13B	14112	hard fitting	café	No Asbestos Detected
14A	14113	roof drain	café	No Asbestos Detected
14B	14114	roof drain	café	No Asbestos Detected
15A	14115	Duct sealant	café	No Asbestos Detected
15B	14116	Duct sealant	café	No Asbestos Detected
16A	14117	textured ceiling	café	No Asbestos Detected
16B	14118	textured ceiling	café	No Asbestos Detected
5C	14119	Joint Compound	café	No Asbestos Detected
17	14120	Cove base	café	No Asbestos Detected
18	14121	Cove base glue	café	No Asbestos Detected
19	14122	window sill	café	No Asbestos Detected
20	14123	wndow glaze	café/kitchen	Chrysotile=3%
21	14124	door caulk	café/kitchen	No Asbestos Detected
22	14125	caulk	wall	Chrysotile=3%
23	14126	window panel cove	café	No Asbestos Detected
24	14127	door glaze	Gym	No Asbestos Detected
25	14128	9X9 floor tile	Gym	Chrysotile=3%
26	14129	black mastic	Gym	No Asbestos Detected
27	14130	black fabric under brick	exterior	No Asbestos Detected
28	14131	Joint Compound	kitchen	No Asbestos Detected
29	14132	cove base	kitchen	No Asbestos Detected

Asbestos Identification Laboratory 165U New Boston St., Ste 271

165U New Boston St., Ste 271 Woburn, MA. 01801 Bulk Asbestos Analysis by Polarized Light Microscopy EPA Method: 600/R-93/116

30	14133	Cove base glue	kitchen	No Asbestos Detected
31	14134	9X9 floor tile	kitchen	Chrysotile=5%
32	14135	black glue	kitchen	No Asbestos Detected
33	14136	metal pan insulation	kitchen	No Asbestos Detected
34	14137	12 x 12 floor tile	kitchen	No Asbestos Detected
35	14138	12 x 12 white floor tile	kitchen	Chrysotile=3%
36	14139	black mastic	kitchen	Chrysotile=10%
37	14140	expansion joint	kitchen	No Asbestos Detected
38	14141	Duct sealant	kitchen	No Asbestos Detected
39	14142	2 x 2 SAT	kitchen	No Asbestos Detected
40	14143	window panel cove	dinning room	No Asbestos Detected
41	14144	glue tab	boiler room	Chrysotile=20%
42	14145	duct cloth	boiler room	No Asbestos Detected
43	14146	Duct sealant	boiler room	No Asbestos Detected
44	14147	glue tab	boiler room	Chrysotile=30%
45	14148	wall tile grout	Boys locker room	No Asbestos Detected
46	14149	glue	Boys locker room	No Asbestos Detected
47	14150	fir coating	Boys locker room	No Asbestos Detected
48	14151	Sheetrock	Boys locker room	No Asbestos Detected
49	14152	glaze	gym	Chrysotile=2%
50	14153	2x2 SAT	Boys locker room	No Asbestos Detected
51	14154	Sheetrock	Boys locker room	No Asbestos Detected

Asbestos Identification Laboratory 165U New Boston St., Ste 271 Woburn, MA. 01801 Bulk Asbestos Analysis by Polarized Light Microscopy EPA Method: 600/R-93/116

52	14155	hard fitting	Boys locker room	No Asbestos Detected
53	14156	black tar paper	gym	No Asbestos Detected
54	14157	carpet glue	library	No Asbestos Detected
55	14158	textured ceiling	library	No Asbestos Detected
56	14159	2x4 SAT	library	No Asbestos Detected
57	14160	12 x 12 floor tile	library	Chrysotile=2%
58	14161	black mastic	library	Chrysotile=10%
60	14162	wall plaster	library	No Asbestos Detected
60.1	14163	wall tile grout	hall	No Asbestos Detected
61	14164	Joint Compound	bathroom	No Asbestos Detected
62	14165	Sheetrock	bathroom	No Asbestos Detected
63	14166	2x2 SAT	bathroom	No Asbestos Detected
64	14167	glue	bathroom	No Asbestos Detected
65	14168	glaze	clsrm H-17	No Asbestos Detected
66	14169	12x12 floor tile	clsrm H-16	No Asbestos Detected
67	14170	black mastic	clsrm H-16	No Asbestos Detected
68	14171	Joint Compound	clsrm H-16	No Asbestos Detected
69	14172	cove base	clsrm H-16	No Asbestos Detected
70	14173	Cove base glue	clsrm H-16	No Asbestos Detected
71	14174	door cove	clsrm H-16	No Asbestos Detected

Asbestos Identification Laboratory 165U New Boston St., Ste 271 Woburn, MA. 01801 Bulk Asbestos Analysis by Polarized Light Microscopy EPA Method: 600/R-93/116

72	14175	glue daub behind white board	clsrm H-16	No Asbestos Detected
73	14176	cabinet top	clsrm H-16	No Asbestos Detected
74	14177	gray sink coating	admin office	No Asbestos Detected
75	14178	Joint Compound	admin office	No Asbestos Detected
76	14179	Sheetrock	admin office	No Asbestos Detected
77	14180	red duct sealant	admin office copy room	No Asbestos Detected
78	14181	Joint Compound	admin office copy room	No Asbestos Detected
79	14182	Sheetrock	admin office copy room	No Asbestos Detected
80	14183	gray duct sealant	admin office copy room	No Asbestos Detected
81	14184	Joint Compound	admin office copy room	No Asbestos Detected
82	14185	PI	clsrm H-10	No Asbestos Detected
83	14186	caulk	clsrm H-10	No Asbestos Detected
84	14187	black mastic	clsrm H-10	No Asbestos Detected
85	14188	peg board	clsrm H-9	No Asbestos Detected
86	14189	caulk	wall	Chrysotile=3%
87	14190	breeching gasket	boiler room	No Asbestos Detected
88	14191	red gasket	boiler room	No Asbestos Detected
89	14192	white gasket	boiler room	No Asbestos Detected
90	14193	caulk	clsrm H-6	Chrysotile=3%

Asbestos Identification Laboratory 165U New Boston St., Ste 271

165U New Boston St., Ste 271 Woburn, MA. 01801 Bulk Asbestos Analysis by Polarized Light Microscopy EPA Method: 600/R-93/116

91	14194	Joint Compound	clsrm H-6	No Asbestos · Detected
92	14195	Sheetrock	clsrm H-6	No Asbestos Detected
93	14196	glaze	clsrm H-6	No Asbestos Detected
94A	14197	ceiling plaster	Auditorium	No Asbestos Detected
94B	14198	ceiling plaster	Auditorium	No Asbestos Detected
94C	14199	ceiling plaster	Auditorium	No Asbestos Detected
95A	14200	wall plaster	Auditorium	No Asbestos Detected
95B	14201	wall plaster	Auditorium	No Asbestos Detected
95C	14202	wall plaster	Auditorium	No Asbestos Detected
96	14203	black paper under Auditorium stage		No Asbestos Detected
97	14204	caulk	main hall	Chrysotile=3%
98	14205	Sheetrock	main hall	No Asbestos Detected
99	14206	black sink coating	Photo lab	No Asbestos Detected
100	14207	table top	Photo lab	No Asbestos Detected
101A	14208	2x4 SAT	Photo lab	No Asbestos Detected
101B	14209	2x4 SAT	Photo lab	No Asbestos Detected
102	14210	black sink coating	Photo lab	Chrysotile=5%
103	14211	kiln brick	Photo lab	No Asbestos Detected
104	14212	carpet glue	main office	No Asbestos Detected
105	14213	carpet glue w/ black	main office	No Asbestos Detected

Asbestos Identification Laboratory 165U New Boston St., Ste 271 Woburn, MA. 01801 Bulk Asbestos Analysis by Polarized Light Microscopy EPA Method: 600/R-93/116

106	14214	Joint compound- wall	main office	No Asbestos Detected
107	14215	Joint compound-ceiling	main office	No Asbestos Detected
108A	14216	black glue daub	behind stage	No Asbestos Detected
108B	14217	black glue daub	behind stage	No Asbestos Detected
109	14218	1X1 AT	band hall	No Asbestos Detected
110	14219	brown glue daub	band hall	No Asbestos Detected
111	14220	1X1 AT	band hall	No Asbestos Detected
112	14221	12 x 12 floor tile	band hall	Chrysotile=2%
113	14222	black mastic	band hall	Chrysotile=5%
114	14223	2x4 SAT	band hall	No Asbestos Detected
115	14224	glue daub residue	band hall	No Asbestos Detected
116	14225	duct sealant	furnance room	No Asbestos Detected
117	14226	metal-to-metal caulk	exterior window	No Asbestos Detected
118	14227	caulk	exterior window	No Asbestos Detected
119	14228	paper	exterior	No Asbestos Detected
120	14229	caulk	exterior	No Asbestos Detected
121	14230	metal-to-metal caulk	exterior	No Asbestos Detected
122	14231	caulk	exterior	No Asbestos Detected
123	14232	caulk	exterior	No Asbestos Detected
124	14233	Joint compound	hall	No Asbestos Detected
125	14234	Sheetrock	hall	No Asbestos Detected

Asbestos Identification Laboratory 165U New Boston St., Ste 271 Woburn, MA. 01801 Bulk Asbestos Analysis by Polarized Light Microscopy EPA Method: 600/R-93/116

126	14235	12x12 floor tile	hall	Chrysotile=2%
127	14236	black mastic	hall	Chrysotile=15%
128	14237	cove base	hall	No Asbestos Detected
129	14238	Cove base glue	hall	No Asbestos Detected
130	14239	9X9 floor tile	boiler room landing	Chrysotile=2%
131	14240	black mastic	boiler room landing	Chrysotile=10%
132	14241	12 x 12 floor tile	hall	No Asbestos Detected
133	14242	black mastic	hall	No Asbestos Detected
134	14243	grout	hall	No Asbestos Detected
135	14244	caulk	hall	Chrysotile=5%
136	14245	Joint compound	hall	No Asbestos Detected
137	14246	glaze	at 5.21	Chrysotile=2%
138	14247	glaze	at 5.30	Chrysotile=5%
139	14248	brown spray applied fire proofing	above ceiling	No Asbestos Detected
140	14249	glue	hall	No Asbestos Detected
141	14250	12x12 floor tile	L2	Chrysotile=5%
142	14251	black mastic	L2	Chrysotile=10%
143	14252	black counter top	science clsrm	No Asbestos Detected
144	14253	hard fitting	Science storage room	Chrysotile=20%
59	14254	Interior window glaze	library	Chrysotile=2%

Asbestos Identification Laboratory

165U New Boston St., Ste 271 Woburn, MA. 01801 Bulk Asbestos Analysis by Polarized Light Microscopy EPA Method: 600/R-93/116

Asbestos Consultants 61 Unity Avenue Belmont, MA 02478 Suite/Apt

Batch 865

Dear Ed Morgan, The following correspondence contains two communications:

- 1. Results of Asbestos project Concord Carlisle High School
- 2. Billing Invoice.

The information and analysis contained in this report have been generated using the EPA /600/R-93/116 Method for the Determination of Asbestos in Bulk Building Materials. Materials or products that contain more than 1% of any kind or combination of asbestos are considered an asbestos containing building material as determined by the EPA. This Polarized Light Microscope (PLM) technique may be performed either by visual estimation or point counting. Point counting provides a determination of friable material, the determination may be repeated using the point counting technique. The results of the point counting supersede visual PLM results. Results in this report only relate to the items tested. This report may not be used by the customer to claim product endorsement by NVLAP or any other U.S. Government Agency.

- NVLAP Lab Code: 200919-0
- Massachusetts Certification License: AA000208
- State of Connecticut, Department of Public Health Approved Environmental Laboratory Registration# PH-0142
- State of Maine, Department of Environmental Protection Asbestos Analytical Laboratory License Number LB-0078(Bulk) LA-0087(Air)

Page 1 of 3

Asbestos Identification Laboratory

165U New Boston St., Ste 271 Woburn, MA. 01801 Bulk Asbestos Analysis by Polarized Light Microscopy EPA Method: 600/R-93/116

Results for Client Project: Concord Carlisle High School, Batch# 865

Work Received: 4/29/2011 Date Sampled: 5/3/2011 5:43:05 PM Results Sent: 5/3/2011 5:43:36 PM

<u>Field_ID: 145 Material: Black material behind concrete block Color: Black Location: Exterior Sample# 14365</u> <u>CEL=020 NON=070 ASBESTOS DETECTED CHR=010</u>

Field_ID: 146 Material: Black windowsill Color: Black Location: LL gym ramp Sample# 14366 NON=100 None Detected

Field_ID: 147 Material: Spray applied fireproofing Color: Tan Location: LL gym ramp Sample# 14367 CEL=095 NON=005 None Detected

Field ID: 148 Material: 12 x 12 red tile Color: Red Location: LL gym hall Sample# 14368 NON=100 None Detected

Field_ID: 149 Material: Black mastic Color: Black Location: LL gym hall Sample# 14369 CEL=010 NON=090 None Detected

End of Report

Legend (All sample results represent percentages EX: 001 = 1%) TR(Trace) = < 1% Asbestos Minerals: Chrysotile=CHR, Amosite=AMO, Crocidolite=CRO, Actinolite=ACT, Tremolite=TRE, Anthophylite=ANT Fibrous Materials: Fiberglass=FBG, Mineral Wood=MNW, Cellulose=CEL, Hair=HAR, Synthetic=SYN, Other=OTH, Non-Fibrous=NON

Asbestos Identification Laboratory 165U New Boston St., Ste 271 Woburn, MA. 01801 Bulk Asbestos Analysis by Polarized Light Microscopy EPA Method: 600/R-93/116

Sample ID	Lab ID	Material	Sample Location	Analytical Results
145	14365	Black material behind concrete block	Exterior	Chrysotile=10%
146	14366	Black windowsill	LL gym ramp	No Asbestos Detected
147	14367	Spray applied fireproofing	LL gym ramp	No Asbestos Detected
148	14368	12 x 12 red tile	LL gym hall	No Asbestos Detected
149	14369	Black mastic	LL gym hall	No Asbestos Detected

Asbestos Identification Laboratory

165U New Boston St., Ste 271 Woburn, MA. 01801 Bulk Asbestos Analysis by Polarized Light Microscopy EPA Method: 600/R-93/116

Asbestos Consultants 61 Unity Avenue Belmont, MA 02478 Suite/Apt

Batch 864

Dear Ed Morgan, The following correspondence contains two communications:

- 1. Results of Asbestos project Concord Carlisle roof samples
- 2. Billing Invoice.

The information and analysis contained in this report have been generated using the EPA /600/R-93/116 Method for the Determination of Asbestos in Bulk Building Materials. Materials or products that contain more than 1% of any kind or combination of asbestos are considered an asbestos containing building material as determined by the EPA. This Polarized Light Microscope (PLM) technique may be performed either by visual estimation or point counting. Point counting provides a determination of friable material, the determination may be repeated using the point counting technique. The results of the point counting supersede visual PLM results. Results in this report only relate to the items tested. This report may not be used by the customer to claim product endorsement by NVLAP or any other U.S. Government Agency.

- NVLAP Lab Code: 200919-0
- Massachusetts Certification License: AA000208
- State of Connecticut, Department of Public Health Approved Environmental Laboratory Registration# PH-0142
- State of Maine, Department of Environmental Protection Asbestos Analytical Laboratory License Number LB-0078(Bulk) LA-0087(Air)

Page 1 of 4

Asbestos Identification Laboratory

165U New Boston St., Ste 271 Woburn, MA. 01801 Bulk Asbestos Analysis by Polarized Light Microscopy EPA Method: 600/R-93/116

Results for Client Project: Concord Carlisle roof samples, Batch# 864 Work Received: 4/29/2011 Date Sampled: 4/27/2011 Results Sent: 5/3/2011 5:19:16 PM

Field ID: 1 Material: Core Color: Multi Location: Roof Sample# 14335 CEL=070 NON=030 None Detected

Field_ID: 2 Material: Core Color: Multi Location: Roof Sample# 14336 CEL=010 SYN=010 NON=075 ASBESTOS DETECTED CHR=005

Field ID: 3 Material: Fabric Color: Multi Location: Roof Sample# 14337FBG=065 NON=035 None Detected

Field ID: 4 Material: Curb Color: Black Location: Roof Sample# 14338FBG=015 CEL=060 NON=025 None Detected

<u>Field_ID: 5 Material: Core and tectum Color: Multi Location: Roof Sample# 14339 CEL=065 NON=035 None</u> Detected

Field_ID: 6 Material: Core Color: Multi Location: Roof Sample# 14340 CEL=060 NON=040 None Detected

Field_ID: 7 Material: Back corner block Color: Multi Location: Roof Sample# 14341 CEL=065 NON=035 None Detected

Field_ID: 8 Material: Back corner block Color: Multi Location: Roof Sample# 14342 CEL=070 NON=030 None Detected

Field_ID: 9 Material: Core Color: Multi Location: Roof Sample# 14343FBG=010 CEL=060 NON=030 None Detected

Field_ID: 10 Material: No Sample Color: Location: Sample# 14344 Did Not Analyze

Field_ID: 11 Material: Core Color: Multi Location: Top of library Sample# 14345 CEL=065 NON=035 None Detected

Field_ID: 12 Material: Core Color: Multi Location: Main office Sample# 14346FBG=005 CEL=055 NON=040 None Detected

Field_ID: 13 Material: Core Color: Multi Location: Main office Sample# 14347 CEL=065 NON=035 None Detected

Field ID: 14 Material: Core Color: Multi Location: Main office Sample# 14348 CEL=065 NON=035 None Detected

Field_ID: 15 Material: Core Color: Multi Location: Steel braced gym Sample# 14349 CEL=070 NON=030 None Detected

Field_ID: 16 Material: Core curb Color: Multi Location: LL gym Sample# 14350 CEL=060 NON=040 None Detected

Field_ID: 17A Material: Curb Color: Multi Location: LL gym Sample# 14351 CEL=060 NON=040 None Detected

Field_ID: 17B Material: Curb Color: Black Location: LL gym Sample# 14352 CEL=005 NON=095 None Detected

Field ID: 18 Material: Curb Color: Multi Location: Door #56 Sample# 14353 CEL=055 NON=045 None Detected

Field_ID: 19 Material: Curb Color: Multi Location: Door #56 Sample# 14354 NON=090 ASBESTOS DETECTED CHR=010

Field ID: 20 Material: Styrofoam Color: White Location: Main entrance roof Sample# 14355 NON=100 None Detected

Field_ID: 21 Material: Styrofoam Color: White Location: Split face | bldg block Sample# 14356 NON=100 None Detected

Field ID: 22 Material: Styrofoam Color: White Location: Door 14 Sample# 14357 NON=100 None Detected

Field ID: 23 Material: Styrofoam Color: White Location: Door 52 Sample# 14358 NON=100 None Detected

Field ID: 24 Material: Roof Color: Multi Location: Door 03 Sample# 14359 CEL=060 NON=040 None Detected

Field_ID: 25 Material: Roof Color: Multi Location: Door 56 kitchen Sample# 14360 CEL=050 NON=050 None Detected

Field_ID: 26 Material: Roof Color: Multi Location: Door 12 S building Sample# 14361 CEL=050 NON=050 None Detected

Field_ID: 27 Material: Wall insulation Color: Multi Location: Door 36 Sample# 14362 CEL=045 NON=055 None Detected

Field_ID: 28 Material: Flashing at foundation Color: Black Location: Exterior Sample# 14363FBG=040 NON=060 None Detected

Field_ID: 29 Material: Flashing Color: Black Location: Over windows and doors Sample# 14364FBG=040 NON=060 None Detected

End of Report

Legend (All sample results represent percentages EX: 001 = 1%) TR(Trace) = < 1% Asbestos Minerals: Chrysotile=CHR, Amosite=AMO, Crocidolite=CRO, Actinolite=ACT, Tremolite=TRE, Anthophylite=ANT Fibrous Materials: Fiberglass=FBG, Mineral Wood=MNW, Cellulose=CEL, Hair=HAR, Synthetic=SYN, Other=OTH, Non-Fibrous=NON

Asbestos Identification Laboratory 165U New Boston St., Ste 271 Woburn, MA. 01801 Bulk Asbestos Analysis by Polarized Light Microscopy EPA Method: 600/R-93/116

Sample ID	Lab ID	Material	Sample Location	Analytical Results
1	14335	Core	Roof	No Asbestos Detected
2	14336	Core	Roof	Chrysotile=5%
3	14337	Fabric	Roof	No Asbestos Detected
4	14338	Curb	Roof	No Asbestos Detected
5	14339	Core and tectum	Roof	No Asbestos Detected
6	14340	Core	Roof	No Asbestos Detected
7	14341	Back corner block	Roof	No Asbestos Detected
8	14342	Back corner block	Roof	No Asbestos Detected
9	14343	Core	Roof	No Asbestos Detected
10	14344	No Sample		Did Not Analyze
11	14345	Core	Top of library	No Asbestos Detected
12	14346	Core	Main office	No Asbestos Detected
13	14347	Core	Main office	No Asbestos Detected
14	14348	Core	Main office	No Asbestos Detected
15	14349	Core	Steel braced gym	No Asbestos Detected
16	14350	Core curb	LL gym	No Asbestos Detected
17A	14351	Curb	LL gym	No Asbestos Detected
17B	14352	Curb	LL gym	No Asbestos Detected
18	14353	Curb	Door #56	No Asbestos Detected

Asbestos Identification Laboratory 165U New Boston St., Ste 271 Woburn, MA. 01801 Bulk Asbestos Analysis by Polarized Light Microscopy EPA Method: 600/R-93/116

19	14354	Curb	Door #56	Chrysotile=10%
20	14355	Styrofoam	Main entrance roof	No Asbestos Detected
21	14356	Styrofoam	Split face I bldg block	No Asbestos Detected
22	14357	Styrofoam	Door 14	No Asbestos Detected
23	14358	Styrofoam	Door 52	No Asbestos Detected
24	14359	Roof	Door 03	No Asbestos Detected
25	14360	Roof	Door 56 kitchen	No Asbestos Detected
26	14361	Roof	Door 12 S building	No Asbestos Detected
27	14362	Wall insulation	Door 36	No Asbestos Detected
28	14363	Flashing at foundation	Exterior	No Asbestos Detected
29	14364	Flashing	Over windows and doors	No Asbestos Detected

Appendix B

Please Reply To:

AmeriSci Los Angeles

24416 S. Main Street, Ste 308 Carson, California 90745 TEL: (310) 834-4868 • FAX: (310) 834-4772

FACSIMILE TELECOPY TRANSMISSION

To:	Ed Morgan	From:	
	Asbestos Consultants	AmeriSci Job #:	411051084
Fax #:		Subject:	Lead (paint) 48 hour Results
		Client Project:	Concord - Carlisle HS; Concord,
			MA
Email:	edmorgan22@verizon.net		

Date: Friday, May 06, 2011 Time: 15:55:17 **Comments:**

Number of Pages:

CONFIDENTIALITY NOTICE: Unless otherwise indicated, the information contained in this communication is confidential information intended for use of the individual named above. If the reader of this communication is not the intended recipient, you are hereby notified that any dissemination, distribution or copying of this communication is prohibited. If you have received this communication in error, please immediately notify the sender by telephone and return the original message to the above address via the US Postal Service at our expense. Preliminary data reported here will be verified before final report is issued. Samples are disposed of in 60 days or unless otherwise instructed by the protocol or special instructions in writing. Thank you.

> Service 24 Hours A Day • 7 Days A Week **Competitive Prices Certified Analysis** visit our web site - www.amerisci.com

AMERI SCI

.....

enter and

(including cover sheet)

AmeriSci Los Angeles

24416 S. Main Street, Ste 308 Carson, California 90745 TEL: (310) 834-4868 • FAX: (310) 834-4772

AMERI SCI

Lead Analysis Results

Date Received: 05/05/11 **Date Analyzed:** 05/06/11

Paint EPA Method 3050B/7000B

Asbestos Consultants

Job Site: Concord - Carlisle HS; Concord, MA

AmeriSci # 411051084	Client Number	Sample Location	% Lead (w/w)	Lead Content (mg/kg = ppm)
01	LPB - 1	Boiler Room - Floor / Gray Paint	0.016	160
02	LPB - 2	Boys Locker Room - Wall / Beige Paint	0.068	680
03	LPB - 3	Gym Upper - Door / Red Paint	0.025	250
04	LPB - 4	Library - Column / Yellow Paint	0.061	610
05	LPB - 5	Classroom H-16 Wall / White Paint	< 0.01	<100
06	LPB - 6	Classroom H10 - Beam / Blue Paint	0.10	1,000
07	LPB - 7	Classroom H-9 - Wall / Pink Paint	0.028	280
08	LPB - 8	Stage - Wall / Black Paint	< 0.01	<100
09	LPB - 9	Main Office - Window Frame / Brown Paint	< 0.01	<100
10	LPB - 10	Furnace Rm - Floor / Gray Paint	0.018	180
11	LPB - 11	Furnace Rm - Wall / White Paint	0.029	290
12	LPB - 12	Outside Radio Rm - Wall / Yellow Paint	< 0.01	<100
13	LPB - 13	Hall - Column / Green Paint	7.9	79,000
14	LPB - 14	Kitchen - Window Panel / Pink Paint	< 0.01	<100
15	LPB - 15	Kitchen - Window Column / Blue Paint	< 0.01	<100
16	LPB - 16	Gym Wall Ramp Hand Rail / White Paint	< 0.01	<100
17	LPB - 17	LL Gym Hall Wall / White Paint	< 0.01	<100
18	LPB - 18	LL Gym - Wall / Red Paint	< 0.01	<100
19	LPB - 19	Cafe Steelframe / Red Paint	0.14	1,400
20	LPB - 20	Admin Office - Wall / Pink Paint	< 0.01	<100

AmeriSci Reporting Limit is 0.01%, or 100mg/kg prior to any dilutions due to high analyte concentrations or matrix interferences. AmeriSci does not correct sample results by the blank value. All analytical batch data met quality control criteria unless otherwise noted. CA ELAP No. 2322. AIHA Lab No. 100530.

Analyzed by:

Minh Phung, Chemist [dsl]

ELAP No: CA 2322

Page 1 of 1

Mericon Bulk CHAIN OF CUSTODY BULK CHAIN OF CUSTODY AMERISCI BOSTON B SCHOOL STREET WERNOUTH, MA 02189	5 WWW.AMERISCI.COM TOLI FREE: (888) 724-5221 PHONE: (781) 337-9334 FXX: (781) 337-7642 FXX: (781) 337-7642	GMLeVC MA Proj #: A:Positive Stop;TEM;NY ELAP PLM/TEM w/ NOB Prep.	e: <i>CR W</i> Material Type: <i>V</i> Bulk Dust Water <i>CM</i> Date Sampled: <i>CP</i> ///	Sample Description (dust area) Homogenous Area	Di de 71	Vellew a White "	pink "	BYWM I' STay II	Kelleru " Sraen"	bink r bute it	l'alinte : Page) or >
Relinquished By: $ZAMMAM$ Date/Time: $429/1.5$ Received By: $RAMMA$ Date/Time: $5-3-1/1$ Relinquished By: Date/Time: $5-3-1/1$	Company: ASherbs Combult Mark BaterTime: 45/11 09:2 Street Address:	City: State: Zip: Proj Mgr: Phone: Fax: Zip: Proj Address: Cell: Control of Eax: Analysis: PLM	E-mail Curverbar Control Control Control Results: Y / N Turnaround Time Results to: Special Instructions or Comments: Lab ID Field ID Field ID	(PB-1 Brilev Rm - fund	11-5 COVANCER FORM -Wall 11-9 COVAN UPPER - DOW	11-5 CONTRAM - 14-16 Wall	n - 8 Stack - wall	11-10 FUNDLE FIN - FLOW JAME	1 - 12 OUTSIDE Paceo Run - wall	n-1/ Exivery -what and 11-16 Cym hall rame hand vail	AmeriSci, Bulk CoC, rev May 20, 2009

OFCUSTODY NOFCUSTODY CIBOSTON OL STREET MA 02189 MA 02180	e: LM/TEM w/ NOB Prep. describe in comments) ulk Dust Water	Homogenous Area	PAGE COFC
BULK CHAIN BULK CHAIN AMERIS BULK CHAIN BULK CHAIN BULK CHAIN BULK CHAIN BULK CHAIN BULK CHAIN	AmenSci #: / / Ú Proj #: Proj #: Proj #: Proj State TEM; NY ELAP Pl Qualitative; Other (Material Type: B Date Sampled:	iption (dust area) (사건	Ī
AMERISC	Positive Stop; icrovac) (Wpe);	Sample Desc Ved Pro	
e/Time: /Time: /Time:	Project: Proj Mgr: Proj Address: Analysis: PLM ASTM Dust (M Turmaround Time Sampled By:		
Date Date Date Date Date Date	Zip: Zip: Verbal Results: Y / I	-WAN Location relArawe relArawe	
S. M. Weller	State: State: Fax: Fax: Fax: r Comments: fax:	LL EVIN CaR S Atmin	0, 2009
Relinquished By: Received By: Relinquished By: Received By: Company:	Street Address: City: Phone: Cell: E-mail Results to: Special Instructions o	Lab ID Field ID UND 18	The make the make

Appendix C

Monday, May 09, 2011

Ms.Susan Cahalan CDW Consultants, Inc 40 Speen Street Suite 301 Framingham, MA 01701

Project ID: CONCORD CARLYSLE HS Sample ID#s: BA26349 - BA26358

This laboratory is in compliance with the QA/QC procedures outlined in EPA 600/4-79-019, Handbook for Analytical Quality in Water and Waste Water, March 1979, SW846 QA/QC and NELAC requirements of procedures used.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext. 200.

Sincerely yours,

4th Stille

Phyllis Shiller Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #MA-CT-007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 VT Lab Registration #VT11301

Analysis Report	t
-----------------	---

May 09, 2011

FOR: Ms.Susan Cahalan CDW Consultants, Inc 40 Speen Street Suite 301

Framingham, MA 01701

Sample Information

Matrix:SOLIDLocation Code:CDW-PCBRush Request:P.O.#:

	Custody Inform	<u>ation</u>
	Collected by:	
В	Received by:	LB
	Analyzed by:	see

LB see "By" below 04/27/110:0004/29/1116:44

Date

Time

Laboratory Data

SDG ID: GBA26349 Phoenix ID: BA26349

Project ID: CONCORD CARLYSLE HS

Client ID: PCB-1

Parameter	Result	RL	Units	Date	Time	Ву	Reference	
Percent Solid Caulk Extraction for PCB	100 Completed	1	%	05/03/11 05/03/11		JL TB/K	E160.3 SW3540C	
PCB (Soxhlet)								
PCB-1016	ND*	1.5	mg/Kg	05/06/11		MH	3540C/8082	
PCB-1221	ND*	1.5	mg/Kg	05/06/11		MH	3540C/8082	
PCB-1232	ND*	1.5	mg/Kg	05/06/11		MH	3540C/8082	
PCB-1242	ND*	1.5	mg/Kg	05/06/11		MH	3540C/8082	
PCB-1248	ND*	1.5	mg/Kg	05/06/11		MH	3540C/8082	
PCB-1254	ND*	1.5	mg/Kg	05/06/11		MH	3540C/8082	
PCB-1260	ND*	1.5	mg/Kg	05/06/11		MH	3540C/8082	
PCB-1262	ND*	1.5	mg/Kg	05/06/11		MH	3540C/8082	
PCB-1268	ND*	1.5	mg/Kg	05/06/11		MH	3540C/8082	
OA/QC Surrogates								
% DCBP	110		%	05/06/11		MH	3540C/8082	
% TCMX	72		%	05/06/11		MH	3540C/8082	

Project ID: CONCORD CARLYSLE HS					P	hoenix I.I	D.: BA26349	
Client ID:	PCB-1							
Parameter		Result	RL	Units	Date	Time	Ву	Reference

Comments:

* For PCBs, due to matrix interference from non target compounds in the sample an elevated RL was reported.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Level RL=Reporting Level

by this

Phyllis Shiller, Laboratory Director May 10, 2011

Ana	lysi	İS	Re	port
	J			

May 09, 2011

FOR: Ms.Susan Cahalan CDW Consultants, Inc 40 Speen Street Suite 301

Framingham, MA 01701

Sample Information

Matrix:SOLIDLocation Code:CDW-PCBRush Request:P.O.#:

	Custody Inform	nation
	Collected by:	
СВ	Received by:	LB
	Analyzed by:	see

LB see "By" below 04/27/110:0004/29/1116:44

Time

Date

Laboratory Data

SDG ID: GBA26349 Phoenix ID: BA26350

Project ID: CONCORD CARLYSLE HS

Client ID: PCB-2

Parameter	Result	RL	Units	Date	Time	Ву	Reference
Percent Solid Caulk Extraction for PCB	100 Completed	1	%	05/03/11 05/03/11		JL TB/K	E160.3 SW3540C
PCB (Soxhlet)							
PCB-1016	ND	0.33	mg/Kg	05/05/11		MH	3540C/8082
PCB-1221	ND	0.33	mg/Kg	05/05/11		MH	3540C/8082
PCB-1232	ND	0.33	mg/Kg	05/05/11		MH	3540C/8082
PCB-1242	ND	0.33	mg/Kg	05/05/11		MH	3540C/8082
PCB-1248	ND	0.33	mg/Kg	05/05/11		MH	3540C/8082
PCB-1254	0.89	0.33	mg/Kg	05/05/11		MH	3540C/8082
PCB-1260	ND	0.33	mg/Kg	05/05/11		MH	3540C/8082
PCB-1262	ND	0.33	mg/Kg	05/05/11		MH	3540C/8082
PCB-1268	ND	0.33	mg/Kg	05/05/11		MH	3540C/8082
<u>OA/QC Surrogates</u>							
% DCBP	97		%	05/05/11		MH	3540C/8082
% TCMX	85		%	05/05/11		MH	3540C/8082

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Level RL=Reporting Level

Phyllis Shiller, Laboratory Director May 10, 2011

Analysis	Report
----------	--------

May 09, 2011

FOR: Ms.Susan Cahalan CDW Consultants, Inc 40 Speen Street Suite 301

Framingham, MA 01701

Sample Information

Matrix:SOLIDLocation Code:CDW-PCBRush Request:P.O.#:

	Custody Inform	ation
D	Collected by:	
-PCB	Received by:	LB
	Analyzed by:	see

LB see "By" below 04/27/11 0:00 04/29/11 16:44

Date

Time

Laboratory Data

SDG ID: GBA26349 Phoenix ID: BA26351

Project ID: CONCORD CARLYSLE HS

Client ID: PCB-3

Parameter	Result	RL	Units	Date	Time	Ву	Reference	
Percent Solid	100	1	%	05/03/11		JL	E160.3	
Caulk Extraction for PCB	Completed			05/03/11		TB/K	SW3540C	
PCB (Soxhlet)								
PCB-1016	*	1.6	mg/Kg	05/06/11		МН	3540C/8082	
PCB-1221	ND	1.6	mg/Kg	05/06/11		MH	3540C/8082	
PCB-1232	ND	1.6	mg/Kg	05/06/11		MH	3540C/8082	
PCB-1242	ND	1.6	mg/Kg	05/06/11		MH	3540C/8082	
PCB-1248	ND	1.6	mg/Kg	05/06/11		MH	3540C/8082	
PCB-1254	*	1.6	mg/Kg	05/06/11		MH	3540C/8082	
PCB-1260	ND	1.6	mg/Kg	05/06/11		MH	3540C/8082	
PCB-1262	ND	1.6	mg/Kg	05/06/11		MH	3540C/8082	
PCB-1268	ND	1.6	mg/Kg	05/06/11		MH	3540C/8082	
Total PCBs	6.1	1.6	mg/Kg	05/06/11		MH	3540C/8082	
<u>OA/OC Surrogates</u>								
% DCBP	125		%	05/06/11		MH	3540C/8082	
% TCMX	117		%	05/06/11		MH	3540C/8082	

Project ID: CONCORD CARLYSLE HS Client ID: PCB-3

Parameter	Result	RL	Units	Date	Time	Ву	Reference

Comments:

* For PCBs, as per section 11.9.3, when multiple Aroclor's of PCBs are present and the aroclor is no longer recognizable, quantitation may be performed by comparing the total area of the PCB pattern to that of the aroclor it mostly resembles. The PCB pattern did not resemble any of the standards, but most closely resembles a mixture of the Aroclors 1016 and 1254.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Level RL=Reporting Level

Phyllis Shiller, Laboratory Director May 10, 2011

Analysis I	Report
------------	--------

May 09, 2011

FOR: Ms.Susan Cahalan CDW Consultants, Inc 40 Speen Street Suite 301

Framingham, MA 01701

Sample Information

Matrix:SOLIDLocation Code:CDW-PCBRush Request:P.O.#:

	Custody Inform	Custody Information					
	Collected by:						
РСВ	Received by:	LB					
	Analyzed by:	see					

LB see "By" below 04/27/110:0004/29/1116:44

Date

Time

Laboratory Data

SDG ID: GBA26349 Phoenix ID: BA26352

Project ID: CONCORD CARLYSLE HS

Client ID: PCB-4

Parameter	Result	RL	Units	Date	Time	By	Reference	
Percent Solid Caulk Extraction for PCB	100 Completed	1	%	05/03/11 05/03/11		JL TB/K	E160.3 SW3540C	
PCB (Soxhlet)								
PCB-1016	ND*	1.5	mg/Kg	05/06/11		MH	3540C/8082	
PCB-1221	ND*	1.5	mg/Kg	05/06/11		MH	3540C/8082	
PCB-1232	ND*	1.5	mg/Kg	05/06/11		MH	3540C/8082	
PCB-1242	ND*	1.5	mg/Kg	05/06/11		MH	3540C/8082	
PCB-1248	ND*	1.5	mg/Kg	05/06/11		MH	3540C/8082	
PCB-1254	ND*	1.5	mg/Kg	05/06/11		MH	3540C/8082	
PCB-1260	ND*	1.5	mg/Kg	05/06/11		MH	3540C/8082	
PCB-1262	ND*	1.5	mg/Kg	05/06/11		MH	3540C/8082	
PCB-1268	ND*	1.5	mg/Kg	05/06/11		MH	3540C/8082	
OA/QC Surrogates								
% DCBP	80		%	05/06/11		MH	3540C/8082	
% TCMX	49		%	05/06/11		MH	3540C/8082	

Project ID:	CONCORD CARLYSLE	EHS				Р	hoenix I.I	D.: BA26352
Client ID:	PCB-4							
Parameter		Result	RL	Units	Date	Time	Ву	Reference

Comments:

* For PCBs, due to matrix interference from non target compounds in the sample an elevated RL was reported.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Level RL=Reporting Level

by this

Phyllis Shiller, Laboratory Director May 10, 2011

Analy	sis	Rep	ort
-------	-----	-----	-----

May 09, 2011

FOR: Ms.Susan Cahalan CDW Consultants, Inc 40 Speen Street Suite 301

Framingham, MA 01701

Sample Information

Matrix:SOLIDLocation Code:CDW-PCBRush Request:P.O.#:

	Custody Inform	ation
ID	Collected by:	
/-PCB	Received by:	LB
	Analyzed by:	see

LB see "By" below 04/27/110:0004/29/1116:44

Time

Date

Laboratory Data

SDG ID: GBA26349 Phoenix ID: BA26353

Project ID: CONCORD CARLYSLE HS

Client ID: PCB-5

Parameter	Result	RL	Units	Date	Time	Ву	Reference
Percent Solid Caulk Extraction for PCB	100 Completed	1	%	05/03/11 05/03/11		JL TB/K	E160.3 SW3540C
PCB (Soxhlet)							
PCB-1016	ND	0.33	mg/Kg	05/05/11		MH	3540C/8082
PCB-1221	ND	0.33	mg/Kg	05/05/11		MH	3540C/8082
PCB-1232	ND	0.33	mg/Kg	05/05/11		MH	3540C/8082
PCB-1242	ND	0.33	mg/Kg	05/05/11		MH	3540C/8082
PCB-1248	ND	0.33	mg/Kg	05/05/11		MH	3540C/8082
PCB-1254	ND	0.33	mg/Kg	05/05/11		MH	3540C/8082
PCB-1260	ND	0.33	mg/Kg	05/05/11		MH	3540C/8082
PCB-1262	ND	0.33	mg/Kg	05/05/11		MH	3540C/8082
PCB-1268	ND	0.33	mg/Kg	05/05/11		MH	3540C/8082
<u>OA/QC Surrogates</u>							
% DCBP	107		%	05/05/11		MH	3540C/8082
% TCMX	92		%	05/05/11		MH	3540C/8082

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Level RL=Reporting Level

Phyllis Shiller, Laboratory Director May 10, 2011

Analysis	Report
----------	--------

May 09, 2011

FOR: Ms.Susan Cahalan CDW Consultants, Inc 40 Speen Street Suite 301

Framingham, MA 01701

Sample Information

Matrix:SOLIDLocation Code:CDW-PCBRush Request:P.O.#:

	Custody Inform	ation
D	Collected by:	
/-PCB	Received by:	LB
	Analyzed by:	see

LB see "By" below 04/27/11 0:00 04/29/11 16:44

Date

Time

Laboratory Data

SDG ID: GBA26349 Phoenix ID: BA26354

Project ID: CONCORD CARLYSLE HS

Client ID: PCB-6

Parameter	Result	RL	Units	Date	Time	Ву	Reference
Percent Solid	100	1	%	05/03/11		JL	E160.3
Caulk Extraction for PCB	Completed			05/03/11		TB/K	SW3540C
PCB (Soxhlet)							
PCB-1016	*	1.6	mg/Kg	05/06/11		MH	3540C/8082
PCB-1221	ND	1.6	mg/Kg	05/06/11		MH	3540C/8082
PCB-1232	ND	1.6	mg/Kg	05/06/11		MH	3540C/8082
PCB-1242	ND	1.6	mg/Kg	05/06/11		MH	3540C/8082
PCB-1248	ND	1.6	mg/Kg	05/06/11		MH	3540C/8082
PCB-1254	*	1.6	mg/Kg	05/06/11		MH	3540C/8082
PCB-1260	ND	1.6	mg/Kg	05/06/11		MH	3540C/8082
PCB-1262	ND	1.6	mg/Kg	05/06/11		MH	3540C/8082
PCB-1268	ND	1.6	mg/Kg	05/06/11		MH	3540C/8082
Total PCBs	10	1.6	mg/Kg	05/06/11		MH	3540C/8082
OA/QC Surrogates							
% DCBP	134		%	05/06/11		MH	3540C/8082
% TCMX	124		%	05/06/11		MH	3540C/8082

Project ID: CONCORD CARLYSLE HS Client ID: PCB-6

Parameter	Result	RL	Units	Date	Time	Ву	Reference

Comments:

* For PCBs, as per section 11.9.3, when multiple Aroclor's of PCBs are present and the aroclor is no longer recognizable, quantitation may be performed by comparing the total area of the PCB pattern to that of the aroclor it mostly resembles. The PCB pattern did not resemble any of the standards, but most closely resembles a mixture of the Aroclors 1016 and 1254.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Level RL=Reporting Level

Phyllis Shiller, Laboratory Director May 10, 2011

Analysis	Report
----------	--------

May 09, 2011

FOR: Ms.Susan Cahalan CDW Consultants, Inc 40 Speen Street Suite 301

Framingham, MA 01701

Sample Information

Matrix:SOLIDLocation Code:CDW-PCBRush Request:P.O.#:

	Custody Inform	<u>nation</u>
	Collected by:	
РСВ	Received by:	LB
	Analyzed by:	see

LB see "By" below 04/27/110:0004/29/1116:44

Time

Date

Laboratory Data

SDG ID: GBA26349 Phoenix ID: BA26355

Project ID: CONCORD CARLYSLE HS

Client ID: PCB-7

Parameter	Result	RL	Units	Date	Time	Ву	Reference	
Percent Solid Caulk Extraction for PCB	100 Completed	1	%	05/03/11 05/03/11		JL TB/K	E160.3 SW3540C	
PCB (Soxhlet)								
PCB-1016	ND	0.3	mg/Kg	05/04/11		MH	3540C/8082	
PCB-1221	ND	0.3	mg/Kg	05/04/11		MH	3540C/8082	
PCB-1232	ND	0.3	mg/Kg	05/04/11		MH	3540C/8082	
PCB-1242	ND	0.3	mg/Kg	05/04/11		MH	3540C/8082	
PCB-1248	ND	0.3	mg/Kg	05/04/11		MH	3540C/8082	
PCB-1254	ND	0.3	mg/Kg	05/04/11		MH	3540C/8082	
PCB-1260	ND	0.3	mg/Kg	05/04/11		MH	3540C/8082	
PCB-1262	ND	0.3	mg/Kg	05/04/11		MH	3540C/8082	
PCB-1268	ND	0.3	mg/Kg	05/04/11		MH	3540C/8082	
<u>OA/OC Surrogates</u>								
% DCBP	113		%	05/04/11		MH	3540C/8082	
% TCMX	95		%	05/04/11		MH	3540C/8082	

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Level RL=Reporting Level

Phyllis Shiller, Laboratory Director May 10, 2011

Analysis Rep

May 09, 2011

FOR: Ms.Susan Cahalan CDW Consultants, Inc 40 Speen Street Suite 301

Framingham, MA 01701

Sample Information

Matrix:SOLIDLocation Code:CDW-PCBRush Request:P.O.#:

	Custody Inform	<u>nation</u>
.ID	Collected by:	
V-PCB	Received by:	LB
	Analyzed by:	see

LB see "By" below 04/27/110:0004/29/1116:44

Time

Date

Laboratory Data

SDG ID: GBA26349 Phoenix ID: BA26356

Project ID: CONCORD CARLYSLE HS

Client ID: PCB-8

Parameter	Result	RL	Units	Date	Time	Ву	Reference
Percent Solid Caulk Extraction for PCB	100 Completed	1	%	05/03/11 05/03/11		JL TB/K	E160.3 SW3540C
PCB (Soxhlet)							
PCB-1016	ND	0.3	mg/Kg	05/04/11		MH	3540C/8082
PCB-1221	ND	0.3	mg/Kg	05/04/11		MH	3540C/8082
PCB-1232	ND	0.3	mg/Kg	05/04/11		MH	3540C/8082
PCB-1242	ND	0.3	mg/Kg	05/04/11		MH	3540C/8082
PCB-1248	ND	0.3	mg/Kg	05/04/11		MH	3540C/8082
PCB-1254	ND	0.3	mg/Kg	05/04/11		MH	3540C/8082
PCB-1260	ND	0.3	mg/Kg	05/04/11		MH	3540C/8082
PCB-1262	ND	0.3	mg/Kg	05/04/11		MH	3540C/8082
PCB-1268	ND	0.3	mg/Kg	05/04/11		MH	3540C/8082
<u>OA/OC Surrogates</u>							
% DCBP	110		%	05/04/11		MH	3540C/8082
% TCMX	89		%	05/04/11		MH	3540C/8082

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Level RL=Reporting Level

Phyllis Shiller, Laboratory Director May 10, 2011

May 09, 2011

FOR: Ms.Susan Cahalan CDW Consultants, Inc 40 Speen Street Suite 301

Framingham, MA 01701

Sample Information

Matrix:SOLIDLocation Code:CDW-PCBRush Request:P.O.#:

	Custody Inform	<u>nation</u>
ID	Collected by:	
/-PCB	Received by:	LB
	Analyzed by:	see

LB see "By" below 04/27/110:0004/29/1116:44

Time

Date

Laboratory Data

SDG ID: GBA26349 Phoenix ID: BA26357

Project ID: CONCORD CARLYSLE HS

Client ID: PCB-9

Parameter	Result	RL	Units	Date	Time	Ву	Reference
Percent Solid Caulk Extraction for PCB	100 Completed	1	%	05/03/11 05/03/11		JL TB/K	E160.3 SW3540C
PCB (Soxhlet)							
PCB-1016	ND	0.33	mg/Kg	05/04/11		MH	3540C/8082
PCB-1221	ND	0.33	mg/Kg	05/04/11		MH	3540C/8082
PCB-1232	ND	0.33	mg/Kg	05/04/11		MH	3540C/8082
PCB-1242	ND	0.33	mg/Kg	05/04/11		MH	3540C/8082
PCB-1248	ND	0.33	mg/Kg	05/04/11		MH	3540C/8082
PCB-1254	0.56	0.33	mg/Kg	05/04/11		MH	3540C/8082
PCB-1260	ND	0.33	mg/Kg	05/04/11		MH	3540C/8082
PCB-1262	ND	0.33	mg/Kg	05/04/11		MH	3540C/8082
PCB-1268	ND	0.33	mg/Kg	05/04/11		MH	3540C/8082
<u>OA/QC Surrogates</u>							
% DCBP	109		%	05/04/11		MH	3540C/8082
% TCMX	92		%	05/04/11		MH	3540C/8082

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Level RL=Reporting Level

Phyllis Shiller, Laboratory Director May 10, 2011

Analysis Report	t
-----------------	---

May 09, 2011

FOR: Ms.Susan Cahalan CDW Consultants, Inc 40 Speen Street Suite 301 Framingham, MA 01701

Sample Information

Matrix:SOLIDLocation Code:CDW-PCBRush Request:P.O.#:

	Custody Informa	tion
C	Collected by:	
PCB	Received by:	LB
	Analyzed by:	see

LB see "By" below 04/27/11 0:00 04/29/11 16:44

Date

Time

Laboratory Data

SDG ID: GBA26349 Phoenix ID: BA26358

Project ID: CONCORD CARLYSLE HS

Client ID: PCB-10

Parameter	Result	RL	Units	Date	Time	Ву	Reference	
Percent Solid	100	1	%	05/03/11		JL	E160.3	
Caulk Extraction for PCB	Completed			05/03/11		TB/K	SW3540C	
PCB (Soxhlet)								
PCB-1016	ND*	1.6	mg/Kg	05/06/11		MH	3540C/8082	
PCB-1221	ND*	1.6	mg/Kg	05/06/11		MH	3540C/8082	
PCB-1232	ND*	1.6	mg/Kg	05/06/11		MH	3540C/8082	
PCB-1242	ND*	1.6	mg/Kg	05/06/11		MH	3540C/8082	
PCB-1248	ND*	1.6	mg/Kg	05/06/11		MH	3540C/8082	
PCB-1254	ND*	1.6	mg/Kg	05/06/11		MH	3540C/8082	
PCB-1260	ND*	1.6	mg/Kg	05/06/11		MH	3540C/8082	
PCB-1262	ND*	1.6	mg/Kg	05/06/11		MH	3540C/8082	
PCB-1268	ND*	1.6	mg/Kg	05/06/11		MH	3540C/8082	
<u>QA/QC Surrogates</u>								
% DCBP	78		%	05/06/11		MH	3540C/8082	
% TCMX	51		%	05/06/11		MH	3540C/8082	

Project ID: CONCO	RD CARLYSLE HS		F	Phoenix	I.D.: BA26358		
Client ID: PCB-10							
Parameter	Result	RL	Units	Date	Time	Ву	Reference

Comments:

* For PCBs, due to matrix interference from non target compounds in the sample an elevated RL was reported.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Level RL=Reporting Level

by this

Phyllis Shiller, Laboratory Director May 10, 2011

QA/QC Report May 10, 2011

QA/QC Data

SDG I.D.: GBA26349

Parameter	Blank	LCS %	LCSD %	LCS RPD	MS Rec %	MS Dup Rec %	RPD			
QA/QC Batch 176114, QC Sample BA26356, BA26357, BA26358) Polychlorinated Biphenyls	No: BA26332 (BA26349, BA2	6350, BA2	6351, BA26	5352, BA2	6353, BA26	354, BA2635	5,			
Polychlorinated Biphenyls Comment:	79	82	83	1.2						
A LCS and LCS Duplicate were perfor	med instead of a matrix spike and	d matrix spik	e duplicate.							
f there are any questions regarding this data, please call Phoenix Client Services at extension 200.										
RPD - Relative Percent Difference	5		_	`						

LCS - Laboratory Control Sample LCSD - Laboratory Control Sample Duplicate MS - Matrix Spike MS Dup - Matrix Spike Duplicate NC - No Criteria

Phyllis/Shiller, Laboratory Director May 10, 2011

Tuesday, May 10, 2011

Requested Criteria: CAM

Sample Criteria Exceedences Report

Requeste	eu Chiena. CA	avi				GBA26349					Factored	
SampNo	LocCode	Acode	Phoenix Analyte	Criteria Units	ST	State Category	Criteria Name	Result	RL	Factored Criteria	RL Criteria	Analysis Units
BA26349	CDW-PCB	\$PCB_SOXR	PCB-1016	ug/kg	MA	Cam Protocol	PCB SOIL RL	ND*	1500		100	ug/Kg
BA26349	CDW-PCB	\$PCB_SOXR	PCB-1221	ug/kg	MA	Cam Protocol	PCB SOIL RL	ND*	1500		100	ug/Kg
BA26349	CDW-PCB	\$PCB_SOXR	PCB-1232	ug/kg	MA	Cam Protocol	PCB SOIL RL	ND*	1500		100	ug/Kg
BA26349	CDW-PCB	\$PCB_SOXR	PCB-1242	ug/kg	MA	Cam Protocol	PCB SOIL RL	ND*	1500		100	ug/Kg
BA26349	CDW-PCB	\$PCB_SOXR	PCB-1248	ug/kg	MA	Cam Protocol	PCB SOIL RL	ND*	1500		100	ug/Kg
BA26349	CDW-PCB	\$PCB_SOXR	PCB-1254	ug/kg	MA	Cam Protocol	PCB SOIL RL	ND*	1500		100	ug/Kg
BA26349	CDW-PCB	\$PCB_SOXR	PCB-1260	ug/kg	MA	Cam Protocol	PCB SOIL RL	ND*	1500		100	ug/Kg
BA26349	CDW-PCB	\$PCB_SOXR	PCB-1262	ug/kg	MA	Cam Protocol	PCB SOIL RL	ND*	1500		100	ug/Kg
BA26349	CDW-PCB	\$PCB_SOXR	PCB-1268	ug/kg	MA	Cam Protocol	PCB SOIL RL	ND*	1500		100	ug/Kg
BA26350	CDW-PCB	\$PCB_SOXR	PCB-1016	ug/kg	MA	Cam Protocol	PCB SOIL RL	ND	330		100	ug/Kg
BA26350	CDW-PCB	\$PCB_SOXR	PCB-1221	ug/kg	MA	Cam Protocol	PCB SOIL RL	ND	330		100	ug/Kg
BA26350	CDW-PCB	\$PCB_SOXR	PCB-1232	ug/kg	MA	Cam Protocol	PCB SOIL RL	ND	330		100	ug/Kg
BA26350	CDW-PCB	\$PCB_SOXR	PCB-1242	ug/kg	MA	Cam Protocol	PCB SOIL RL	ND	330		100	ug/Kg
BA26350	CDW-PCB	\$PCB_SOXR	PCB-1248	ug/kg	MA	Cam Protocol	PCB SOIL RL	ND	330		100	ug/Kg
BA26350	CDW-PCB	\$PCB_SOXR	PCB-1254	ug/kg	MA	Cam Protocol	PCB SOIL RL	890	330		100	ug/Kg
BA26350	CDW-PCB	\$PCB_SOXR	PCB-1260	ug/kg	MA	Cam Protocol	PCB SOIL RL	ND	330		100	ug/Kg
BA26350	CDW-PCB	\$PCB_SOXR	PCB-1262	ug/kg	MA	Cam Protocol	PCB SOIL RL	ND	330		100	ug/Kg
BA26350	CDW-PCB	\$PCB_SOXR	PCB-1268	ug/kg	MA	Cam Protocol	PCB SOIL RL	ND	330		100	ug/Kg
BA26351	CDW-PCB	\$PCB_SOXR	PCB-1016	ug/kg	MA	Cam Protocol	PCB SOIL RL	*	1600		100	ug/Kg
BA26351	CDW-PCB	\$PCB_SOXR	PCB-1221	ug/kg	MA	Cam Protocol	PCB SOIL RL	ND	1600		100	ug/Kg
BA26351	CDW-PCB	\$PCB_SOXR	PCB-1232	ug/kg	MA	Cam Protocol	PCB SOIL RL	ND	1600		100	ug/Kg
BA26351	CDW-PCB	\$PCB_SOXR	PCB-1242	ug/kg	MA	Cam Protocol	PCB SOIL RL	ND	1600		100	ug/Kg
BA26351	CDW-PCB	\$PCB_SOXR	PCB-1248	ug/kg	MA	Cam Protocol	PCB SOIL RL	ND	1600		100	ug/Kg
BA26351	CDW-PCB	\$PCB_SOXR	PCB-1254	ug/kg	MA	Cam Protocol	PCB SOIL RL	*	1600		100	ug/Kg
BA26351	CDW-PCB	\$PCB_SOXR	PCB-1260	ug/kg	MA	Cam Protocol	PCB SOIL RL	ND	1600		100	ug/Kg
BA26351	CDW-PCB	\$PCB_SOXR	PCB-1262	ug/kg	MA	Cam Protocol	PCB SOIL RL	ND	1600		100	ug/Kg
BA26351	CDW-PCB	\$PCB_SOXR	PCB-1268	ug/kg	MA	Cam Protocol	PCB SOIL RL	ND	1600		100	ug/Kg
BA26352	CDW-PCB	\$PCB_SOXR	PCB-1016	ug/kg	MA	Cam Protocol	PCB SOIL RL	ND*	1500		100	ug/Kg
BA26352	CDW-PCB	\$PCB_SOXR	PCB-1221	ug/kg	MA	Cam Protocol	PCB SOIL RL	ND*	1500		100	ug/Kg
BA26352	CDW-PCB	\$PCB_SOXR	PCB-1232	ug/kg	MA	Cam Protocol	PCB SOIL RL	ND*	1500		100	ug/Kg
BA26352	CDW-PCB	\$PCB_SOXR	PCB-1242	ug/kg	MA	Cam Protocol	PCB SOIL RL	ND*	1500		100	ug/Kg
BA26352	CDW-PCB	\$PCB_SOXR	PCB-1248	ug/kg	MA	Cam Protocol	PCB SOIL RL	ND*	1500		100	ug/Kg
BA26352	CDW-PCB	\$PCB_SOXR	PCB-1254	ug/kg	MA	Cam Protocol	PCB SOIL RL	ND*	1500		100	ug/Kg
BA26352	CDW-PCB	\$PCB_SOXR	PCB-1260	ug/kg	MA	Cam Protocol	PCB SOIL RL	ND*	1500		100	ug/Kg
BA26352	CDW-PCB	\$PCB_SOXR	PCB-1262	ug/ka	MA	Cam Protocol	PCB SOIL RL	ND*	1500		100	ug/Kg
BA26352	CDW-PCB	\$PCB_SOXR	PCB-1268	ug/kg	MA	Cam Protocol	PCB SOIL RL	ND*	1500		100	ug/Kg
BA26353	CDW-PCB	\$PCB_SOXR	PCB-1016	ug/kg	MA	Cam Protocol	PCB SOIL RL	ND	330		100	ug/Kg

Tuesday, May 10, 2011

Requested Criteria: CAM

Sample Criteria Exceedences Report

Request	cu chitena. CA					GBA26349					Factored	
SampNo	LocCode	Acode	Phoenix Analyte	Criteria Units	ST	State Category	Criteria Name	Result	RL	Factored Criteria	RL Criteria	Analysis Units
BA26353	CDW-PCB	\$PCB_SOXR	PCB-1221	ug/kg	MA	Cam Protocol	PCB SOIL RL	ND	330		100	ug/Kg
BA26353	CDW-PCB	\$PCB_SOXR	PCB-1232	ug/kg	MA	Cam Protocol	PCB SOIL RL	ND	330		100	ug/Kg
BA26353	CDW-PCB	\$PCB_SOXR	PCB-1242	ug/kg	MA	Cam Protocol	PCB SOIL RL	ND	330		100	ug/Kg
BA26353	CDW-PCB	\$PCB_SOXR	PCB-1248	ug/kg	MA	Cam Protocol	PCB SOIL RL	ND	330		100	ug/Kg
BA26353	CDW-PCB	\$PCB_SOXR	PCB-1254	ug/kg	MA	Cam Protocol	PCB SOIL RL	ND	330		100	ug/Kg
BA26353	CDW-PCB	\$PCB_SOXR	PCB-1260	ug/kg	MA	Cam Protocol	PCB SOIL RL	ND	330		100	ug/Kg
BA26353	CDW-PCB	\$PCB_SOXR	PCB-1262	ug/kg	MA	Cam Protocol	PCB SOIL RL	ND	330		100	ug/Kg
BA26353	CDW-PCB	\$PCB_SOXR	PCB-1268	ug/kg	MA	Cam Protocol	PCB SOIL RL	ND	330		100	ug/Kg
BA26354	CDW-PCB	\$PCB_SOXR	PCB-1016	ug/kg	MA	Cam Protocol	PCB SOIL RL	*	1600		100	ug/Kg
BA26354	CDW-PCB	\$PCB_SOXR	PCB-1221	ug/kg	MA	Cam Protocol	PCB SOIL RL	ND	1600		100	ug/Kg
BA26354	CDW-PCB	\$PCB_SOXR	PCB-1232	ug/kg	MA	Cam Protocol	PCB SOIL RL	ND	1600		100	ug/Kg
BA26354	CDW-PCB	\$PCB_SOXR	PCB-1242	ug/kg	MA	Cam Protocol	PCB SOIL RL	ND	1600		100	ug/Kg
BA26354	CDW-PCB	\$PCB_SOXR	PCB-1248	ug/kg	MA	Cam Protocol	PCB SOIL RL	ND	1600		100	ug/Kg
BA26354	CDW-PCB	\$PCB_SOXR	PCB-1254	ug/kg	MA	Cam Protocol	PCB SOIL RL	*	1600		100	ug/Kg
BA26354	CDW-PCB	\$PCB_SOXR	PCB-1260	ug/kg	MA	Cam Protocol	PCB SOIL RL	ND	1600		100	ug/Kg
BA26354	CDW-PCB	\$PCB_SOXR	PCB-1262	ug/kg	MA	Cam Protocol	PCB SOIL RL	ND	1600		100	ug/Kg
BA26354	CDW-PCB	\$PCB_SOXR	PCB-1268	ug/kg	MA	Cam Protocol	PCB SOIL RL	ND	1600		100	ug/Kg
BA26355	CDW-PCB	\$PCB_SOXR	PCB-1016	ug/kg	MA	Cam Protocol	PCB SOIL RL	ND	300		100	ug/Kg
BA26355	CDW-PCB	\$PCB_SOXR	PCB-1221	ug/kg	MA	Cam Protocol	PCB SOIL RL	ND	300		100	ug/Kg
BA26355	CDW-PCB	\$PCB_SOXR	PCB-1232	ug/kg	MA	Cam Protocol	PCB SOIL RL	ND	300		100	ug/Kg
BA26355	CDW-PCB	\$PCB_SOXR	PCB-1242	ug/kg	MA	Cam Protocol	PCB SOIL RL	ND	300		100	ug/Kg
BA26355	CDW-PCB	\$PCB_SOXR	PCB-1248	ug/kg	MA	Cam Protocol	PCB SOIL RL	ND	300		100	ug/Kg
BA26355	CDW-PCB	\$PCB_SOXR	PCB-1254	ug/kg	MA	Cam Protocol	PCB SOIL RL	ND	300		100	ug/Kg
BA26355	CDW-PCB	\$PCB_SOXR	PCB-1260	ug/kg	MA	Cam Protocol	PCB SOIL RL	ND	300		100	ug/Kg
BA26355	CDW-PCB	\$PCB_SOXR	PCB-1262	ug/kg	MA	Cam Protocol	PCB SOIL RL	ND	300		100	ug/Kg
BA26355	CDW-PCB	\$PCB_SOXR	PCB-1268	ug/kg	MA	Cam Protocol	PCB SOIL RL	ND	300		100	ug/Kg
BA26356	CDW-PCB	\$PCB_SOXR	PCB-1016	ug/kg	MA	Cam Protocol	PCB SOIL RL	ND	300		100	ug/Kg
BA26356	CDW-PCB	\$PCB_SOXR	PCB-1221	ug/kg	MA	Cam Protocol	PCB SOIL RL	ND	300		100	ug/Kg
BA26356	CDW-PCB	\$PCB_SOXR	PCB-1232	ug/kg	MA	Cam Protocol	PCB SOIL RL	ND	300		100	ug/Kg
BA26356	CDW-PCB	\$PCB_SOXR	PCB-1242	ug/kg	MA	Cam Protocol	PCB SOIL RL	ND	300		100	ug/Kg
BA26356	CDW-PCB	\$PCB_SOXR	PCB-1248	ug/kg	MA	Cam Protocol	PCB SOIL RL	ND	300		100	ug/Kg
BA26356	CDW-PCB	\$PCB_SOXR	PCB-1254	ug/kg	MA	Cam Protocol	PCB SOIL RL	ND	300		100	ug/Kg
BA26356	CDW-PCB	\$PCB_SOXR	PCB-1260	ug/kg	MA	Cam Protocol	PCB SOIL RL	ND	300		100	ug/Kg
BA26356	CDW-PCB	\$PCB_SOXR	PCB-1262	ug/kg	MA	Cam Protocol	PCB SOIL RL	ND	300		100	ug/Kg
BA26356	CDW-PCB	\$PCB_SOXR	PCB-1268	ug/kg	MA	Cam Protocol	PCB SOIL RL	ND	300		100	ug/Kg
BA26357	CDW-PCB	\$PCB_SOXR	PCB-1016	ug/kg	MA	Cam Protocol	PCB SOIL RL	ND	330		100	ug/Kg
BA26357	CDW-PCB	\$PCB_SOXR	PCB-1221	ug/kg	MA	Cam Protocol	PCB SOIL RL	ND	330		100	ug/Kg
Tuesday, May 10, 2011

Requested Criteria: CAM

Sample Criteria Exceedences Report

•						GBA26349					Factored	
SampNo	LocCode	Acode	Phoenix Analyte	Criteria Units	ST	State Category	Criteria Name	Result	RL	Factored Criteria	RL Criteria	Analysis Units
BA26357	CDW-PCB	\$PCB_SOXR	PCB-1232	ug/kg	MA	Cam Protocol	PCB SOIL RL	ND	330		100	ug/Kg
BA26357	CDW-PCB	\$PCB_SOXR	PCB-1242	ug/kg	MA	Cam Protocol	PCB SOIL RL	ND	330		100	ug/Kg
BA26357	CDW-PCB	\$PCB_SOXR	PCB-1248	ug/kg	MA	Cam Protocol	PCB SOIL RL	ND	330		100	ug/Kg
BA26357	CDW-PCB	\$PCB_SOXR	PCB-1254	ug/kg	MA	Cam Protocol	PCB SOIL RL	560	330		100	ug/Kg
BA26357	CDW-PCB	\$PCB_SOXR	PCB-1260	ug/kg	MA	Cam Protocol	PCB SOIL RL	ND	330		100	ug/Kg
BA26357	CDW-PCB	\$PCB_SOXR	PCB-1262	ug/kg	MA	Cam Protocol	PCB SOIL RL	ND	330		100	ug/Kg
BA26357	CDW-PCB	\$PCB_SOXR	PCB-1268	ug/kg	MA	Cam Protocol	PCB SOIL RL	ND	330		100	ug/Kg
BA26358	CDW-PCB	\$PCB_SOXR	PCB-1016	ug/kg	MA	Cam Protocol	PCB SOIL RL	ND*	1600		100	ug/Kg
BA26358	CDW-PCB	\$PCB_SOXR	PCB-1221	ug/kg	MA	Cam Protocol	PCB SOIL RL	ND*	1600		100	ug/Kg
BA26358	CDW-PCB	\$PCB_SOXR	PCB-1232	ug/kg	MA	Cam Protocol	PCB SOIL RL	ND*	1600		100	ug/Kg
BA26358	CDW-PCB	\$PCB_SOXR	PCB-1242	ug/kg	MA	Cam Protocol	PCB SOIL RL	ND*	1600		100	ug/Kg
BA26358	CDW-PCB	\$PCB_SOXR	PCB-1248	ug/kg	MA	Cam Protocol	PCB SOIL RL	ND*	1600		100	ug/Kg
BA26358	CDW-PCB	\$PCB_SOXR	PCB-1254	ug/kg	MA	Cam Protocol	PCB SOIL RL	ND*	1600		100	ug/Kg
BA26358	CDW-PCB	\$PCB_SOXR	PCB-1260	ug/kg	MA	Cam Protocol	PCB SOIL RL	ND*	1600		100	ug/Kg
BA26358	CDW-PCB	\$PCB_SOXR	PCB-1262	ug/kg	MA	Cam Protocol	PCB SOIL RL	ND*	1600		100	ug/Kg
BA26358	CDW-PCB	\$PCB_SOXR	PCB-1268	ug/kg	MA	Cam Protocol	PCB SOIL RL	ND*	1600		100	ug/Kg

Phoenix Laboratories does not assume responsibility for the data contained in this report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

		MassDE	EP Analyti	cal P	rotocol Ce	ertific	cation Forn	n		
Labo	oratory Na	ame: Phoenix En	vironmental	Labor	atories, Inc.	Proje	ect #:			
Proje	ect Locat	ion: CONCORE	CARLYSLE	EHS		RTN				
This F	Form provid	les certifications for	the following	data se	t: [list Laborate	ory Sar	nple ID Number	(s)]		
BA263	349, BA263	50, BA26351, BA2635	2, BA26353, B	A26354	- , BA26355, BA2	- 6356, E	3A26357, BA2635	58		
Matric	es: 🗌 Gro	oundwater/Surface Wa	ater 🗌 Soil/	Sedime	nt 🗌 Drinkin	g Wate	er 🗌 Air	V 0	ther:	Solid
CAM	Protocol (check all that app	ly below)		I		T			
8260 \		7470/7471 Hg	MassDEP VP	н	8081 Pesticide	s	7196 Hex Cr		Mass	
CANT			CANITY A		CAIVIVB				CANT	
8270 \$		7010 Metals	MassDEP EP	н	8151 Herbicide	s	8330 Explosives	s	TO-15	
CAINT			CANITY B						CAIVIT	
6010 N	/letals	6020 Metals	8082 PCB		9014 Total		6860 Perchlorat	te		
CAMI			CAM V A	\checkmark	Cyanide/PAC CAM V1 A		CAM VIII B			
	Affirmat	ive responses to c	uestions A t	hroug	n F are require	ed for	"Presumptive	Certa	inty" ៖	status
Α	Were all s	samples received in	a condition o	consiste	ent with those of	describ	oed on the			—
	Chain-of- laboratory	Custody, properly p /, and prepared/ana	reserved (inc	luding f	emperature*) i olding times?	n the f	field or narrative)		Yes	L No
В	Were the selected (analytical method(CAM protocol(s) fol	s) and all asso owed?	ociated	QC requireme	nts sp	ecified in the	✓	Yes	🗌 No
С	Were all i	equired corrective	actions and a	nalytica	al response act	ions s	pecified in the			
	conforma	nces?		airiue	nuneu periorni	ances			Yes	🗌 No
D	Does the	laboratory report co	mply with all	the rep	orting requirer	nents	speified in			
	and Repo	A, "Quality Assuran orting of Analytical [ce and Quality	y Contr	ol Guidelines f	or the	Acquisition	\checkmark	Yes	🗌 No
F	E a. VPH, EPH, and APH Methods only: Was each method conducted without									
significant modification(s)? (refer to the individual method(s) for a list of significant modifications)										
	b. APH and TO-15 methods only: Was the complete analyte list reported for each Ves No									
	method?									
F Were all applicable CAM protocol QC and performance standard non-										
	conformances identified and evaluated in a laboratory narrative (including all "No" Yes No								🗆 No	
	Res	onses to questio	ns G. H and I	below	is required fo	or "Pre	esumptive Cer	taintv	" statı	IS
G	Wore the	reporting limits at a		AMron			in the		oluli	
	selected	CAM protocol(s)?		AMTep	orung innus sp	ecineu	in the		Yes	✓ No
Data U	Data User Note: Data that achieve "Presumptive Certainty" status may not necessarily meet the data usability and									
repres	sentativene	ss requirements des	cribed in 310	CMR 40	. 1056(2)(k) and	WSC	-07-350			
H	Were all (QC performance sta	andards speci	ified in	the CAM proto	col(s)	achieved?		Yes	□ No
	Were res protocol(s	ults reported for the s)?	complete an	alyte lis	st specified in t	he sele	ected CAM	✓	Yes	□ No
l tha	mdoroiono	All negative i	esponses musi	t be add	ressed in an atta	ched la	aboratory narrativ	e.		h
respondent	nsible for o elief, accura	btaining the information and complete.	tion, the mate	rial con	tained in this a	nalytic	al report is, to t	he bes	t of my	/ knowledge
		0.1.	`		_		_			
• • •		YY)		Ε	ate:	Tuesday, May	10, 2	2011	
Auth	norized nature: -	1 deal	prome	-	Printed Na	ame:	Greg Lawrenc	e		
Gigi		0			Posi	tion: /	Assistant Lab	Direc	tor	

NY # 11301

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

MCP Certification Report

May 10, 2011

SDG I.D.: GBA26349

Due to the complexity of the sample matrix several samples did not meet the requested criteria.

PCB Narration

Were all QA/QC performance criteria specified in the MADEP document CAM achieved? Yes.

Instrument: <u>Au-ecd5 05/04/11-1 (BA26355, BA26356, BA26357)</u>

8082 Narration:

The initial calibration RSD for the compound list was less than 15% except for the following compounds: none

The continuing calibration standards were within acceptance criteria except for the following compounds: none

Printed Name	Michael Hahn
Position:	Chemist
Date:	5/4/2011

Instrument: <u>Au-ecd5 05/05/11-1 (BA26350, BA26353)</u>

8082 Narration:

The initial calibration RSD for the compound list was less than 15% except for the following compounds: none

The continuing calibration standards were within acceptance criteria except for the following compounds: none

Printed Name	Michael Hahn
Position:	Chemist
Date:	5/5/2011

Instrument: <u>Au-ecd7 05/06/11-1 (BA26349, BA26358)</u>

8082 Narration:

The initial calibration RSD for the compound list was less than 15% except for the following compounds: none

The continuing calibration standards were within acceptance criteria except for the following compounds: none

Printed Name	Michael Hahn
Position:	Chemist
Date:	5/6/2011

QC Comments: QC Batch 76114 05/02/11 (BA26349, BA26350, BA26351, BA26352, BA26353, BA26354, BA26355, BA26356, BA26357, BA26358)

MCP Certification Report

May 10, 2011

SDG I.D.: GBA26349

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

QC (Batch Specific)

----- Sample No: BA26332 ------

All LCS recoveries were within 30 - 130 with the following exceptions: None.

All LCSD recoveries were within 30 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 20% with the following exceptions: None.

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

ne	ntal Laboratories,	Inc.		100	East Middle 1 Email: info@ Clien	fumpike, P.O)phoenixlabs. t Services	 Box 370, Mai com Fax (i (860) 64(i 	nchester, CT 0 360) 645-0823 5-8726	6040		Email:	scahala	n @ Colv	1 Sept
, t.t.	CDUD Consolta 10 Speer ST, 22mirgham	ALLIS SUL	105/05/	1.6	Projec Repor		and-Can	ys #	SHOCK		Project P.(Phone #: Fax #:	ö		
$ \square$	glient Sample - Information	- Identifica	ntion - Date: A	1-92-1	Analysi Reques	si is	LEI LEI				18 005	OH	*0501 10 050111	140 140
ater	WW=wastewater S=soil/s SL=sludge A=air	solid O =oil X=ot	1er					$\langle \rangle$			outerie ist	4. 14000 	\$ 	
	Customer Sample Identification	Sample Matrix	Date Sampled	Time Sampled	e e e e e e e e e e e e e e e e e e e	$\langle \rangle$			<u>E</u>	501 60 501 60	10 10 10 10 10 10 10 10 10 10 10 10 10 1	1994 C	A CANA CO	
	1C6-1	S	4 R7/11	1								\ \	, , ,	
	108-2			١	X				~					
	1cb-3			۱	X					-				
	108-4			۱	X									
	NOB-S			ι	X	-	-							
	R8-6			۱	X									
	NCS-7			1	X									
	105-8			۱										
	ber 9			(X									
	Heb-10	\rightarrow		1										
-														
à	Accepted by			Date		Time:	Turnaround			AM		Data For	rmat	
11.	T T Minuce		700.	C C	00111	Nieco Nieco	- 1 Day* - 2 Days* 3 Days*		ert hect oility		Certification		el : 'Key	
		þ		*	+ - -	-	Standard	GB Mot SW Prot	oility tection	S-1 8.3		an a	er er	
ecial	Requirements or Regulation	:su					* SURCHARG APPLIES	in the second se	ol. I. iteria	S-2 MWRA	V eSMART	Data Pac	<mark>ckage</mark> -A. Reduced Del	*
							State wh	ere sample:	s were coll	lected:	MA	2883 0002 1	Hazsite EDD enix Std Rep er	ort

Appendix D

Tuesday, May 10, 2011

Asbestos Consultants 61 Unity Ave Belmont MA 02478-3633

Project ID: 1105-042 Sample ID#s: BA28510 - BA28515

This laboratory is in compliance with the QA/QC procedures outlined in EPA 600/4-79-019, Handbook for Analytical Quality in Water and Waste Water, March 1979, SW846 QA/QC and NELAC requirements of procedures used.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext. 200.

Sincerely yours,

halto Stille

Phyllis Shiller Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #MA-CT-007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #CT-003 RI Lab Registration #68-03530 RI Lab Registration #63 VT Lab Registration #VT11301

Analysis	Report
----------	--------

FOR: Asbestos Consultants 61 Unity Ave Belmont MA 02478-3633

May 10, 2011

Sample Informa	<u>ition</u>	Custody Inform	nation	Date	Time
Matrix:	BULK	Collected by:		04/29/11	0:00
Location Code:	AMERI-SPEC	Received by:	LB	05/05/11	17:00
Rush Request:	RUSH#	Analyzed by:	see "By" below		
P.O.#:					

Laboratory Data

SDG ID: GBA28510 Phoenix ID: BA28510

Project ID:	1105-042
Client ID:	HG-1 RUBBER STAIR TREAD

Parameter	Result	RL	Units	Date	Time	Ву	Reference
Mercury	< 0.06	0.06	mg/Kg	05/06/11		RS	SW-7471
Percent Solid	100	1	%	05/09/11		JL	E160.3
Mercury Digestion	Completed			05/06/11			SW7471

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Level RL=Reporting Level

Phyllis Shiller, Laboratory Director May 12, 2011

<u>Time</u> 0:00

17:00

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report
May 10, 2011

FOR: Asbestos Consultants 61 Unity Ave Belmont MA 02478-3633

Sample Informa	<u>ition</u>	Custody Inform	nation	<u>Date</u>
Matrix:	BULK	Collected by:		04/29/11
Location Code:	AMERI-SPEC	Received by:	LB	05/05/11
Rush Request:	RUSH#	Analyzed by:	see "By" below	
P.O.#:		Laboratory	[,] Data	SDG ID:

SDG ID: GBA28510 Phoenix ID: BA28511

Project ID:	1105-042
Client ID:	HG-2 RAMP FLOORING

Parameter	Result	RL	Units	Date	Time	Ву	Reference
Mercury	< 0.06	0.06	mg/Kg	05/06/11		RS	SW-7471
Percent Solid	100	1	%	05/09/11		JL	E160.3
Mercury Digestion	Completed			05/06/11			SW7471

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Level RL=Reporting Level

Phyllis Shiller, Laboratory Director May 12, 2011

Analy	sis	Rep	ort
-------	-----	-----	-----

FOR: Asbestos Consultants 61 Unity Ave Belmont MA 02478-3633

May 10, 2011

Sample Information		Custody Inform	nation	Date	<u>Time</u>
Matrix:	BULK	Collected by:		04/29/11	0:00
Location Code:	AMERI-SPEC	Received by:	LB	05/05/11	17:00
Rush Request:	RUSH#	Analyzed by:	see "By" below		
P.O.#:		Laboratory Data		SDG ID:	GBA28510
				Phoenix ID:	BA28512

Project ID:	1105-042
Client ID:	HG-3 BLACK FLOOR MAT

Parameter	Result	RL	Units	Date	Time	Ву	Reference
Mercury	< 0.08	0.08	mg/Kg	05/06/11		RS	SW-7471
Percent Solid	100	1	%	05/09/11		JL	E160.3
Mercury Digestion	Completed			05/06/11			SW7471

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Level RL=Reporting Level

Phyllis Shiller, Laboratory Director May 12, 2011

Analysis R	eport
------------	-------

FOR: Asbestos Consultants 61 Unity Ave Belmont MA 02478-3633

May 10, 2011

Sample Inform	Sample Information		nation	<u>Date</u>	<u>Time</u>
Matrix:	BULK	Collected by:		04/29/11	0:00
Location Code:	AMERI-SPEC	Received by:	LB	05/05/11	17:00
Rush Request:	RUSH#	Analyzed by:	see "By" below		
P.O.#:		Laboratory Data		SDG ID:	GBA28510
			Data	Phoenix ID:	BA28513
Project ID:	1105-042				
Client ID:	HG-4 RAMP FLOOR				

Parameter	Result	RL	Units	Date	Time	Ву	Reference
Mercury	< 0.07	0.07	mg/Kg	05/06/11		RS	SW-7471
Percent Solid	100	1	%	05/09/11		JL	E160.3
Mercury Digestion	Completed			05/06/11			SW7471

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Level RL=Reporting Level

Phyllis Shiller, Laboratory Director May 12, 2011

Analysis	Report
----------	--------

FOR: Asbestos Consultants 61 Unity Ave Belmont MA 02478-3633

May 10, 2011

Sample Informa	<u>ition</u>	Custody Inform	nation	Date	<u>Time</u>
Matrix:	BULK	Collected by:		04/29/11	0:00
Location Code:	AMERI-SPEC	Received by:	LB	05/05/11	17:00
Rush Request:	RUSH#	Analyzed by:	see "By" below		
P.O.#:		Laboratory Data		SDG ID:	GBA28510
				Phoenix ID:	BA28514

Project ID:	1105-042
Client ID:	HG-5 RUBBER FLOOR

Parameter	Result	RL	Units	Date	Time	Ву	Reference
Mercury	33.9	3.0	mg/Kg	05/06/11		RS	SW-7471
Percent Solid	100	1	%	05/09/11		JL	E160.3
Mercury Digestion	Completed			05/06/11			SW7471

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Level RL=Reporting Level

Phyllis Shiller, Laboratory Director May 12, 2011

Analysis Report
May 10, 2011

FOR: Asbestos Consultants 61 Unity Ave Belmont MA 02478-3633

Sample InformationCustody InformationDate	<u>Time</u>
Matrix: BULK Collected by: 04/29/	11 0:00
Location Code: AMERI-SPEC Received by: LB 05/05/	11 17:00
Rush Request: RUSH# Analyzed by: see "By" below	
P.O.#: Laboratory Data SE)G ID: GBA28510
Phoer	1ix ID: BA28515
Project ID: 1105-042	
Client ID: HG-6 RAMP HALL	

Parameter	Result	RL	Units	Date	Time	Ву	Reference
Mercury	0.43	0.06	mg/Kg	05/06/11		RS	SW-7471
Percent Solid	100	1	%	05/09/11		JL	E160.3
Mercury Digestion	Completed			05/06/11			SW7471

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Level RL=Reporting Level

Phyllis Shiller, Laboratory Director May 12, 2011

QA/QC Report May 12, 2011

QA/QC Data

SDG I.D.: GBA28510

Parameter	Blank	Dup RPD	LCS %	LCSD %	LCS RPD I	MS N Rec %	/IS Dup Rec %	RPD
QA/QC Batch 176420, QC Sample No: BA284	82 (BA2851	0, BA285 ⁻	11, BA285	12, BA285 ⁻	13, BA2851	4, BA2851	ō)	
Mercury - Soil	BDL	NC	93.9	84.7	10.3	84.0	86.9	3.4

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Phyllis/Shiller, Laboratory Director May 12, 2011

V OF CUSTODY V OF CUSTODY に Bosrow ou Smeer MA 02189 0.1 Smeer MA 02189 0.1 Smeer MA 02189 0.1 Smeer 1) 337-9334 1337-7642 0) - つりこ MTEM w/ NOB Prep. describe in comments) describe in comments) describe in comments)	Homogenous Area 28510 28512 28512 28512 28514	AGE OF
BULK CHAIN RISCI BULK CHAIN AMERIS B Scho WENNOUTH TOLL FRE: (8 B Scho WENNOTH FAX: (781 FAX: (7	r Starr the dust area) r Starr the d P floor ing floor ing floor - hall	
: U DIII 1931 145 : 5-3-11 145 SSS 14 13 20 Project: CONCAA CAN Project: CONCAA CAN Proj Address: CONCAA CAN Matysis: _PLM; _Positive S ASTM Dust (Microvac) (Mipe Urmaround Time: ampled By: US hyw	Samp Rubber Fruber ramp	
Date/Time Date/Time Date/Time Date/Time	Location	el 5/5/11 1700
d By: Ed Morren d By: Rohut Editor d By: Jonn Lie d By: Editor La d By: Editor La d By: Editor La State: Fax: 115-ille Re Fax: 115-ille Re Fax: Congrinents: Cong	Cibrary	rev May 20, 2009 SA2.C
Relinquish Receive Relinquishe Relinquishe Receive Company: Compan		AmeriSci, Bulk CoC

PRINCIPALS AND ASSOCIATE

Yee Cho, P.E., L.S.P. Kathleen Campbell, P.E., L.S.P., LEED, AP John Goodhall, P.E.

May 17, 2011

Ms. Lisa Pecora-Ryan Office of Michael Rosenfeld, Inc. 543 Massachusetts Avenue West Acton, MA 01720

> RE: Hazardous Materials Summary Report Cost Memorandum Concord-Carlisle High School, Concord, Massachusetts CDW Project #1135.00

Dear Ms. Pecora-Ryan:

CDW Consultants, Inc. (CDW) is pleased to present this cost memorandum for the findings of the hazardous materials survey of the Concord-Carlisle High School, Concord, Massachusetts.

The associated costs for the asbestos abatement and other hazardous materials are presented in the table on the next page.

Please call if you have any questions or require additional information.

Very truly yours,

CDW CONSULTANTS, INC.

m Coheler

Susan Cahalan, P.G. Project Manager

May 17, 2011 Page 2

TABLE 1

Asbestos Containing Material & Other Hazardous Materials Costs

Description	Location	Result	Approximate Quantity	Unit Cost	Total Estimated Cost
Floor Tiles and Mastic – Both 9" x 9" and 12" x 12"	Throughout	2%-3% Chrysotile	70,000 SF	\$4/SF	\$280,000
Older Window Glaze in Café /Kitchen	Café	2% Chrysotile	8 Window Banks	\$275/Each	\$2,200
Window Glaze in Hall Outside Café	Hall Outside Café	3% Chrysotile	4 Window Banks	\$275/Each	\$1,100
Steel Column Caulk Interior	Throughout	3% Chrysotile	5,000 LF	\$10/LF	\$50,000
Glue Tab in Boiler Room	Boiler Room	20% Chrysotile	200 SF	\$15/SF	\$3,000
Window Glaze in Gym	Gym	2% Chrysotile	20 Windows	\$275 Each	\$5,500
Interior Window Glaze in Library	Library	2% Chrysotile	4 Window Banks	\$275 Each	\$1,100
Caulk on Block Wall	Throughout	3% Chrysotile	5,000 LF	\$10/LF	\$50,000
Door Frame Caulk	Interior Throughout	3% Chrysotile	3,750 LF	\$10/LF	\$37,500
Black Sink Coating	Throughout	5% Chrysotile	50 Each	\$150/Each	\$7,500
Interior Hall Window Glaze	Throughout	2%-5% Chrysotile	250 Each	\$275/Each	\$68,750
Hard Fittings	Throughout	20% Chrysotile	2,000 Each	\$15/Each	\$30,000
Black Material Behind Concrete Block on Exterior	Exterior	10% Chrysotile	75,000 SF	\$5/SF	\$375,000
Walk in Refrigerator and Freezer Coating	Assumed		4 Each	\$5,000/Each	\$20,000
Hidden Pipe Insulation	Assumed		2,000 LF	\$15/LF	\$30,000
Lab Hoods	Assumed		8 Each	\$150/Each	\$1,200
Fire Doors	Assumed		50 Each	\$150/Each	\$7,500
Subsurface Transite Pipe	Assumed		2,000 LF	\$15/LF	\$30,000
Hidden Transite Panels	Assumed		10,000 SF	\$10/SF	\$100,000
Dry Transformer Lining	Assumed		30 Each	\$100/Each	\$3,000
Fire Curtain	Visual		1 Each	\$2,000/Each	\$2,000

CDW Consultants, Inc.

TABLE 1

Asbestos Containing Material & Other Hazardous Materials Costs (Continued)

Description	Location	Result	Approximate Quantity	Unit Cost	Total Estimated Cost
Roof Core	Auditorium Building	5% Chrysotile	20,000 SF	\$7/SF	\$140,000
Roof Curb	Above Door # 56	10% Chrysotile	20,000 SF	\$7/SF	\$140,000

LF = Linear Foot

SF = Square Foot

Table 2
Other Hazardous Materials

Description	Location	Result	Approximate Quantity	Unit Cost	Total Estimated Cost
Ballasts (PCBs)	Throughout		800	\$5/ea	\$4,000
Florescent Bulbs (Mercury)	Throughout		3,000	\$2/ea	\$6,000
Thermostats and Switches (Mercury)	Throughout		70	\$20/ea	\$1,400
Emergency Light Batteries (Lead)	Throughout		50	\$20/ea	\$1,000
Dry Type Transformers (Possible PCBs)	Throughout		30	\$100/ea	\$3,000
Chemicals in Sinks and Other	Throughout		One Drum	\$500/ea	\$500
Mercury Containing Rubber Floor	LL Gym	33.9 mg/kg	10,000 SF	\$10/SF	\$100,000
TOTAL ESTIMATED COST					\$1,501,250

June 6, 2011 File No. 84890.00 **VIA E-MAIL**

Lisa Pecora-Ryan, Architect, LEED[®] AP OMR Architects 543 Massachusetts Avenue West Acton, MA 01720 (978) 264-0160 x 235 Ipecoraryan@omr-architects.com

Re: Preliminary Geotechnical Recommendations Concord-Carlisle High School (Options 6R1 and 12) Concord, Massachusetts DSA Project No. 11017

Dear Ms. Pecora-Ryan

This report presents Nobis Engineering, Inc.'s (Nobis) preliminary geotechnical engineering recommendations for the Feasibility/Schematic Design Phase of the Concord-Carlisle High School in Concord, Massachusetts. This report is subject to the attached limitations.

We understand that the following two options are currently being considered.

- <u>Addition/Renovation (Option 6R1)</u>: The addition will be a one-story building and have a footprint of approximately 150,000 square feet and a finished floor elevation of 166. The lower gym located on the west side would be at approximately EI. 150. This option will include renovations to the north side of the school with an addition along the southern side of the existing school.
- 2. <u>New School Building (Option 12)</u>: A 4-story building with a footprint of approximately 88,500 square feet. The lowest level will be at approximately EI. 148. This proposed school is location northwest of the existing school on the slope adjacent to the lower lacrosse and baseball fields.

SITE CONDITIONS

The site consists of the existing school that is at approximately El. 166 with a lower section at El. 155 at the west end. The existing grades general slope down from the school to the north and west down to approximately El. 136; up to the south to approximately El. 200 and is relatively flat to the east. There are sports field to the west of the school on the lower fields and fields to the south west up on the hill.

Client-Focused, Employee-Owned

www.nobiseng.com

Nobis Engineering, Inc. 585 Middlesex Street Lowell, MA 01851 T (978) 683-0891

SUBSURFACE EXPLORATIONS

New Hampshire Boring, Inc. (NHB) of Brockton, Massachusetts drilled four (4) test borings, designated B-101 through B-104. The test borings were observed and logged by Nobis personnel. The borings were drilled to depths of approximately 32 to 47 feet below the ground surface. Generally, the borings were terminated in a dense sand, very dense glacial till or on probable bedrock.

Previously, The Geotechnical Group drilled four borings (B1 through B4) at the Site in June 2005 and Engineering Services drilled 23 borings at the site in May 1958. The location of these previous explorations and the accuracy of those logs have not been verified by Nobis.

Logs for the test borings are attached. The approximate locations of the test borings are shown on Figure 1, Boring Location Plan.

One sample of the sand with an N-value of 10 was tested for grain size distribution analyses. The laboratory report is attached.

SUBSURFACE CONDITIONS

Addition/Renovation (Option 6R1)

Recent borings (B-103 and B-104) encountered 25 feet of sand over till or 25 feet of sand over 10 feet of fine sand and silt over more than 12 feet of sand. The 1958 borings were generally drilled to shallow depths and extended 1 to 9 feet below proposed footing levels. These 1958 borings generally encountered medium dense sand. N-values in the sand generally ranged between 10 and 30 in the upper 10 feet and more than 30 at greater depths.

New School Building (Option 12)

Borings (B-101 and B-102) drilled on the lower fields generally encountered 6 inches of topsoil at the surface overlying approximately 15 to 26 feet of medium dense to dense sand; over approximately 10 feet of stiff to hard, varved, silt and clay; over 7 feet of glacial till; over probable bedrock. Boring B-103 conducted on the top of the slope near the existing school encountered 25 feet of sand; over more than 7 feet of glacial till.

The sand generally consisted of a stratified medium to fine sand with 10 to 20% silt with occasionally 6 to 12 inch thick layers containing approximately 10 to 30% fine gravel. The N-values typically range between 20 and 50, however an N-value of 10 was encountered in B-102 at a depth of 16 feet.

The silt and clay layer consists of alternating thin varves of silt, and silty clay. These varves were deposited seasonally as lake bottom deposit in glacial Lake Concord. The silt varves generally vary between 1/8 inch to 1/4 inch in thickness and the silty clay layer were observed to generally be 1/16 to 1/8 of an inch thick.

The glacial till generally consisted of very dense mixture of sand, silt, and gravel with some boulders.

Groundwater

Groundwater was encountered approximately 3 feet below grades at the lower fields and 12 to 18 feet below grades near the existing school. Groundwater will fluctuate with the season and the amount of precipitation, and may be different at the time of construction. Groundwater levels measured during drilling may not reflect stabilized water levels.

GEOTECHNICAL ENGINEERING RECOMMENDATIONS

The following paragraphs present: our preliminary geotechnical engineering evaluation of the subsurface conditions relative to the proposed site development; our preliminary recommendations related to design of building foundations, the lowest floor slab, foundation retaining walls, underdrains; and preliminary earthwork and subgrade preparation procedures.

Primary Geotechnical Issues

Addition/Renovation (Option 6R1)

Borings for the addition encountered 25 to more than 47 feet of medium dense to dense sand over very dense sand and gravel. Based on the limited subsurface explorations conducted at the site we are not aware of significant geotechnical issues at this time for this option.

New School Building Location (Option 12)

In summary this building will require up to approximately 12 feet of fill on the north end of the building and a 4 to 6 foot cut on the south end. The northern half of the building is underlain by approximately 15 to 26 feet of sand, over approximately 8 feet of varved silt and clay, over approximately 7 feet of glacial till, over bedrock. On the southern side of the building dense sand over glacial till was encountered.

These varved silts and clays are compressible and will settle up to 7 inches due to the 12 feet of raise in grade planned for approximately half of the building foot print and approximately 2 inch from the building loads for a total of 9 inches of settlement. Approximately 7 inches will occur over first year while an additional 2 inches would occur over the next 50 years. We recommend a preload be placed for approximately 4 to 6 months to induce these settlements prior to construction of the building. Preliminary calculations based on limited information indicate that placing a preload for 4 to 6 months with a 6 foot surcharge load would reduce post construction settlements to less than an 1 inch. Once the building loads, finished floor elevations have been finalized and additional sampling and testing of the clay has been complete these preliminary calculations and recommendations should be revised and updated. Future analysis may indicate that the settlements from the proposed construction are more or less than the estimates above.

Foundation Design (Both Options)

• We recommend that the building be supported by shallow spread footings bearing on the natural sand or compacted structural fill placed above the natural sands. Spread footings for both locations should be designed using a maximum net allowable bearing pressure of 2 tsf for footings bearing on these materials.

- For frost protection, exterior footings exposed to freezing temperatures should bear at least 4 feet below the adjacent exterior grade. Interior footings, in areas not exposed to freezing temperatures, should be at least 18 inches below finished floor grade, while also providing at least 6 inches of soil cushion between the bottom of the slab and the top of the footings.
- Total settlement for both building foundation options is expected to be less than 1 inch after the new school location has been preload as discussed above. Differential settlement between interior columns is estimated to be less than 3/4-inch.
- Based on the groundwater elevations measured in the borings, perimeter and slab underdrains are not required.
- Floor slabs should be designed as slabs-on-grade bearing on at least 6 inches of material that meets the material specifications for Gravel Fill provided below. A modulus of subgrade reaction of at least 150 pounds per cubic inch (pci) should be achieved.

Subgrade Preparation Procedures for Building Areas

It is recommended that building pad areas be prepared as follows:

- The building should be cleared of vegetation and grubbed and existing topsoil, asphalt and concrete should be removed.
- After surface materials have been removed and existing utilities removed or abandoned from within the zone of influence of building areas, subgrades should be densified by intensive Surface Compaction to ensure that the existing fill materials (where encountered) have the required consistency. Surface Compaction should consist of at least 4 passes of a smooth-drum vibratory roller (minimum 20,000 lbs.) under the observation of a Geotechnical Engineer, or his/her representative. Soft or loose zones identified during Surface Compaction should be replaced with compacted Granular Fill or Gravel Fill, as necessary, and as required by the Geotechnical Engineer.
- The zone of influence is defined as that area within a line projecting outward and downward from the outside edges of the exterior footings at a one horizontal to one vertical (1H:1V) slope.
- <u>Gravel Fill</u> to be used as the 6 inch layer beneath the floor slab-on-grade and as backfill behind the site reinforced concrete retaining walls and other areas as appropriate shall consist of hard, inert, durable gravel and sand. It shall be free from ice and snow, roots, surface coatings, sod, loam, clay, rubbish, and other deleterious or organic matter, and shall conform to the following gradation requirements:

Concord-Carlisle High School, Concord, MA June 6, 2011

Sieve Size	Percent Passing by Weight
3-inch	100
1/2-inch	50-85
No. 4	40-75
No. 50	8-28
No. 200	0-10

• <u>Granular Fill</u> to be used for general raises in grade in proposed building and pavement areas shall be free from ice, snow, roots, surface coatings, sod, loam, clay, rubbish, and other deleterious matter, and shall be well-graded within the following gradation requirements:

Sieve Size	Percent Passing by Weight
4-inch	100
1-inch	90-100
No. 10	25-95
No. 40	15-75
No. 200	0-12

• <u>On-Site Fill</u> to be re-used within building and paved areas shall consist of natural inorganic soil free of ice, snow, roots, surface coatings, sod, loam, clay, debris and other deleterious material and shall meet the following gradation requirements:

Sieve Size	Percent Passing by Weight
6-inch	100
No. 4	50-90
No. 40	10-35
No. 200	0-20

- Excavations will encounter fill and glacial till that may contain significant amounts of silt. These soils will be sensitive to disturbance when wet. Excavations to subgrade in these areas should be performed in such a way as to limit the potential for disturbance to the subgrade. Where encountered the silty subgrade surface should be covered with a minimum of 6-inches of Gravel Fill to protect the material from disturbance and from becoming wet during construction activities.
- Fill material to be placed to raise the grade within the zone of influence of building pad areas should consist of Gravel Fill, Granular Fill, or On-Site Fill that meets the gradation

requirements above. Fill within the building footprint should be placed in loose lifts not to exceed 12 inches thick, and compacted to at least 95 percent of its maximum dry density as determined by ASTM D-1557, Method C (Modified Proctor).

Seismic Design

It is our opinion that the soils encountered during drilling at the Site are not susceptible to liquefaction as defined in Section 1806.4 of the Massachusetts State Building Code. We recommend using the following design parameters as defined by the Commonwealth of Massachusetts State Building Code (MSBC) and, where applicable, the International Building Code (IBC):

- Site Class: D (IBC Section 1613.5.5);
- MCE spectral response accelerations: $S_s = 0.29g$ and $S_1 = 0.07g$ (MSBC Table 1604.11)
- Site Coefficients: $F_a = 1.6$ and $F_v = 2.4$ (IBC Table 1613.5.3(1) and 1613.5.3(2))
- Seismic design parameters: $S_{MS} = 0.464$ and $S_{M1} = 0.168$ (IBC 2009 Equation 16-36 and 16-37); $S_{DS} = 0.309$ and $S_{D1} = 0.112$ (IBC Equation 16-38 and 16-39).

Lateral Earth Pressures for Below Grade Walls

Foundation walls that will be braced at the top by floor slabs should be designed for a lateral earth pressure based on an equivalent fluid unit weight of soil of 55 pounds per cubic foot (pcf). Unrestrained site retaining walls (active condition) should be designed for a lateral earth pressure based on an equivalent fluid unit weight of soil of 35 pcf for slope angles behind the wall that are relatively level. For walls with slopes behind the wall of 4H:1V use an equivalent fluid unit weight of soil of 40 pcf; and for walls with slopes of 3H:1V use an equivalent fluid unit weight of soil of 45 pcf.

A sliding friction coefficient of 0.6 is recommended for the wall footing bearing on fill and on the natural sand. It should be assumed that there will be no passive resistance at the front of the wall for this analysis.

The walls should be designed assuming that hydrostatic water pressure will not be applied to the wall and constructed to drain.

Temporary Dewatering

Groundwater may be encountered in excavations. Temporary excavation dewatering should be performed so that the work conducted is completed in the dry. It is likely that dewatering may be accomplished by pumping from filtered sumps installed in low points of the excavation. Discharge water should be managed in accordance with local, state and federal government requirements.

Re-Use of On-site Soil

We recommend that the soils excavated at the site be reused as On-site Fill as described above in the *Subgrade Preparation Procedures for Building Areas* section. Soil with with more than 20% silt may be encountered. We recommend those materials be reused in landscape areas or mixed with other soil so that the fines are less than 20%. These material with fines up to 20% will be difficult to reuse if wet. We recommend that these materials be kept dry during construction.

Thank you for the opportunity to be of service. We look forward to providing you with these geotechnical services. Should you require additional information, please contact us.

Very truly yours,

Nobis Engineering, Inc.

Intin amid

Kurtis Amidon, P.E. Senior Project Manager

7. Delinch

Kurt Jelinek, P.E. Senior Project Manager

Attachments:

Figure 1, Preliminary Boring Exploration Plan Recent Exploration Logs by Nobis Previous Boring Logs by others Laboratory Testing Limitations FIGURE 1

ö

RECENT EXPLORATION LOGS BY NOBIS

											PR	OJECT		Boring	g No:		B-101	1	
		7	V		1					Conc	ord Ca	rlisle High School		Boring	g Locatior	n: Softball	Field,	1st base li	ne
		1	V			5					Cor	ncord, MA		Checl	ked by:	k	(Ami	don	
			-					_						Date	Start:	May 13, 2	2011		
1	ng	inee	ring	g a Sust	ainab	ie ru	iture	N	obis	s File No:	·	84890.00		Date	Finish:	May 13,	2011		
С	ontra	actor:	N	lew Hamp	shire B	oring,	Inc.	Rig	Туре	e / Model	:	B-53 Mobile Track		Grour	nd Surfac	e Elev.:	~1	36.5 ft.	
D	riller:			Ja	mes			Ham	me	r Type: _		Safety Hammer		Тор-о	f-Riser El	ev.:			
	obis	Rep.:		C.	Rousse	au	Comm	_ Ham	ime T	r Hoist: _		Rope & Cathead		Datur	n:				
	vpe			Drive and	Wash		Samp Split-Sp	oon		Date	Time	Depth Below Ground (ft.)	Depth of Ca	using (ft.)	Depth to I	Bottom of Ho	le (ft.)	Stabilization	Time
s	ize (i	n.)		4"			2 ID		¥ C)5/13/11	15:30	3	10.	0		10.0		4 hrs	
A	dvan	ceme	nt	Drive and	Wash	14	10-lb Ha	mmer											
		SAN	IPLE	INFORMAT	ION		LIT	HOLOGY	/ /										Ş
Denth (f		ype No.	Rec (in.)	Depth (ft)	Blows/ 6 in.	Ground Water	raphic	Stratum Elev.(ft.	/			SA	MPLE DESC	RIPTION	N				EMARI
F	, S	6-1	20	0-2	6		0 •••••		,	S-1: M	edium de	ense, brown/orange, fi	ne to medi	um SAN	ND, some	Silt, moist			~
					8 11					Weed	control fa	abric at 1' bgs							
2	2				13														
3	3					V													
GPJ	ı ⊢				-	-													
, LOG					-														
ORINO) S	6-2	20	5-7	15					S-2: De	ense, bro	own, fine to medium S	AND, little	Silt, we	t				
BING B	3				18 23														
- DRILL	7				23														
SINGS	3							SAND											
HS/BO	, -				-														
					-														
0-CARI	U S	6-3	15	10-12	6					S-3: M	edium de	ense, brown, medium	to coarse S	Sand, t	race Silt,	trace Grav	el, wet	t	
1 CORI	1				8 11														
	2				12														
1	3				-														
ACTIV	4 ├																		
31-0	5																		
11 16:	5	6-4	15	15-17	5			121.0		S-4a: (4") Medi	um dense, medium to	coarse SA	ND, tra	ce Silt, tra	ace Gravel,	, wet		
1 - 6/3/	6				6 8					S-4b: (SILT (v	11") Stif /arves 1/	r, gray, SILT & CLAY ('2" thick), wet	varves 1/2	" to 3/4'	' thick) va	rved with g	ıray, C	LAY &	
0.0 1	7				9														
AY 201	8				-														
⊻ 19 19	9				-														
TEMP																			
DATA	s	6-5	20	20-22	10					S-5: Ve	ery stiff,	gray, CLAY & SILT (va	arves 1/8" t	hick) va	arved with	dark gray,	Silty (CLAY	
2 ISED	1				13 13					(layers	1/10 11	ick), wet							
2 2 2 2	2			IFICATION	16														
Ū LĒ LĒ	G -	Geop	probe			LIVIAR	no.												
REHO	5 - U -	Split Undi	Spoo sturb	on ed Sampl	е										_			, -	
B	к-	Core	Run	1											Pa	age No	1	of <u>2</u>	

											PR	OJECT		Boring	g No:. B-10	1	
		7			6					Conc	ord Ca	rlisle High School		Boring	g Location: Softball Field	1st base li	ine
		1	V			5					Cor	icord, MA		Check	ked by: K. Am	idon	
		ino	orin	a o Suct	tainah		turo	_						Date \$	Start: May 13, 2011		
	ing	me	enng	y a Sust	amap	le ru	iture	N	lobis	File No:	·	84890.00		Date I	Finish: May 13, 2011		
Co	ontra	actor	:1	New Hamp	oshire B	oring,	Inc.	Rig	Туре	/ Model	:	B-53 Mobile Track	. <u> </u>	Grour	nd Surface Elev.:~	136.5 ft.	
Dr	iller	:		Ja	imes			- Ham	nmer	Type: _		Safety Hammer		Top-o	f-Riser Elev.:		
		кер		Drilling M	Acthod		Samo					Gro	undwater () bserva	tions		
ту	ре			Drive and	l Wash		Split-Sp	oon		Date	Time	Depth Below Ground (ft.)	Depth of Ca	sing (ft.)	Depth to Bottom of Hole (ft.)	Stabilization	Time
Si	ze (in.)		4"			2 ID	1	_¥0;	5/13/11	15:30	3	10.0)	10.0	4 nrs	
Ac	lvar	ncem	ent	Drive and	l Wash	14	0-lb Ha	mmer									
(ft.)		SA	MPLE	INFORMAT	ION	erd	LIT	HOLOGY									RKS
Depth	. 1 8	Type No.	Rec (in.)	Depth (ft)	Blows/ 6 in.	Grou Wate	Graphic	Stratum Elev.(ft.	1/ .)			SA	MPLE DESC	RIPTION	1		REMAF
					-												
23								113.0									
24	1																
_ 25	5	2.6	22	25.27	25					S-6. Da	anso ar	av fine to coarse SAN	D some Si	lt littla	Gravel moist		
d0.59 26		3-0	22	25-21	20				TILL	0-0. Dt	snoc, gr		D, 30me 0	it, ittic			
9 9 27	,				19 21												
NBORI																	
ND-SC)																
NNOS 30)	S-7	8	30-31.2	21					S-7: Ve	ery dens	e, Gray, fine to coarse	Sand, som	ne Silt, I	ittle Gravel, moist		
NSH 31		-	_		70			105.3		Rock fr	agment	stuck in spoon nose			·		
STIST 32	2				100/2/		×	BEDRO 104.8	ск /	Roller B	Bit advai Bit advai	ncement difficult from a ncement difficult from a	31' to 31.3' 31.3' to 31.	probat 7', blac	ble weathered bedrock k flakes in drill wash, prot	able	7
0-02 33	3				-					Explore	k ation teri	minated at 31.7' after r	oller bit adv	ancem	ent 6" into bedrock]	
SONCO 3/	1																
4890 0																	
0 9 0 1 0 1 0	3																
- 16:31	7																
8(3/11	3																
- 109 39	,⊢																
V 2010.																	
AM TI	<u>_</u>																
L 42	2																
	3																
SIN32 44	1 -																
	SAN G	/PLE	IDENT	IFICATION	RI	EMAR	KS:	_	_				_	_		_	_
EHOLE	Ś. U.	- Spli - Unc	t Spo disturt	on bed Sampl	le												
BOR	R	- Cor	e Rur	່											Page No. 2	of <u>2</u>	

	6							Conc	PR	OJECT	.1	Boring Boring	g No:. g Locat	ion: <u>East End</u>	B-102 , Footb	all Field					
	1		O	01	.S		-	Conc	Cor	ncord, MA	//	Chec	ed by:	ĸ	Amido	20					
_												Date	Start:	May 13, 2	011						
Er	ngine	erin	g a Sus	tainab	le Fi	uture	N	lobis File No	:	84890.00		Date	- Finish:	May 13, 2	2011	_					
Cor	itracto	r:l	New Ham	pshire B	loring,	Inc.	Rig	Type / Mode	l:	B-53 Mobile Tracl	k	Grour	nd Surfa	ace Elev.:	~13	7.5 ft.					
Drill	er:		Ja	ames			_ Ham	nmer Type:		Safety Hammer		Тор-о	f-Riser	Elev.:							
Not	is Rep	o.:	С.	Rousse	eau		_ Ham	nmer Hoist:		Rope & Cathead		Datur	n:								
			Drilling N	Method		Samp	ler	Date	Time	Gro Depth Below Ground (ft.)	Oundwater	Observa	tions	to Bottom of Hole	e (ft.) St	tabilization	Time				
Тур	e		Drive and	d vvasn		Split-Sp	boon	₩ 05/13/11	N/A	7	,					< 5 mir	1				
Size	e (in.)		4"	•	-	2 10)														
Adv	ancen	nent	Drive and	d Wash	14	40-lb Ha	ammer														
spth (ft.)	Type		Depth	Blows/	Bround Nater	TIT	Stratum	r		S	AMPLE DES	CRIPTION	١				MARKS				
ă	& No.	(in.) 24	(ft)	6 in.	0-	0 0 1 1/2 - 1	Elev.(ft)) S-1a (1	18") [.] Dar	k brown, medium den	ise fine to i	medium	SAND	some Organ	ic Silt r	moist	RE				
1	0-1	24	0-2	6		. <u> </u>	101 30		10). Dai	k brown, medium den		neulum	OAND	, some organ	o Ont, i	noist					
2				9			136.0) S-1b ((6"): Medi	um dense, orange/bro	own, fine to	coarse	SAND.	little Silt, trac	e Grave	el.	-				
-								moist	-,	,	- ,		- ,	,		- ,					
3				-																	
4																					
5				-																	
6	S-2	20	5-7	9				S-2: Dense, light brown, fine to medium SAND, trace Silt, moist													
F				21																	
7				15	Ā																
8				-																	
9																					
10				-																	
	S-3	20	10-12	8				S-3a (3	3"): Medi	um dense, brown, coa	arse SAND	, trace S	Silt, wet								
11				12				S-3D (16"): Me	dium dense, brown, fil	ne to mediu	IM SAN	D, trace	e Silt, trace Gr	avel, w	et					
12				7	-																
13							SANE														
14																					
				1																	
15	S-4	22	15-17	4				S-4: M	ledium d	ense, light brown, fine	to medium	SAND,	little S	ilt, stratified or	kidated	layers,	1				
16				4				wet (14	4% fines	, see note 1)											
17				6																	
18				+																	
				1																	
19				-																	
20	с г	10	20.22		-			S. E. M	ledium d	ansa oranga/brown f	ine to coor) little	Gravel trace	Silt ovi	dation					
21	3-5	19	20-22	16				wet		chise, orange/brown, i		SE SAINI	, iitile		Unt, UXI	uauuri,					
22				18																	
Ś	AMPLE	E IDEN	TIFICATION		EMAF	RKS:		1													
	6 - Ge 6 - Sp	oprob lit Spc	e on	. 1) Bas	ed on	laborato	ory testing.													
	J - Un R - Co	disturl	bed Samp	DIE										Page No	1	of <u>2</u>	_				

											PR	OJECT		Borin	g No:	B-1	02	
		5			1					Cono	ord Co	rliala High Sabaal		Borin	g Location	: East End, Fo	otball Field	
				Ol	D 1	S		-		COLC	Cor	nord MA						
								-			001			Chec	ked by:	K. Ar	nidon	
1	En	gine	erin	g a Sust	tainab	le Fu	iture	N	lobis	File No:	•	84890.00		Date	Finish:	May 13, 201 May 13, 201	1	
С	ont	tractor	r:1	New Hamp	oshire B	oring,	Inc.	Rig	Туре	/ Model	:	B-53 Mobile Track		Grou	nd Surface	e Elev.:	•137.5 ft.	
D	rille	er:		Ja	imes			Ham	mer	Туре: _		Safety Hammer		Top-c	of-Riser Ele	ev.:		
N	lobi	s Rep	D.:	C.	Rousse	au		Ham	mer	Hoist: _		Rope & Cathead		Datur	n:			
				Drilling N	/lethod		Samp	ler	<u> </u>	Date	Time	Gro Depth Below Ground (ft.)	Undwater	Observa	ations Depth to E	Bottom of Hole (ft.) Stabilization	Time
	ype	; 		Drive and	vasn		Split-Sp	oon	¥ 05	5/13/11	N/A	7		5(*)			< 5 mi	n
s	ize	(in.)		4"			2 ID											
A	dva	ancem	nent	Drive and	l Wash	14	0-lb Ha	mmer										
(#) (#)		SA -	MPLE	INFORMAT		und ater	LITI .2	HOLOGY	/ 			54			N			ARKS
tuo[nepi	Type & No.	Rec (in.)	Depth (ft)	Blows/ 6 in.	Gro Wa	Graph	Stratum Elev.(ft.	.)			34		SKIFTIOI	N			REM/
					-													
F	.3							CAND										
2	4							SAND	′									
2	5				-													
CPJ	6	S-6	20	25-27	17			444 5		S-6a: (a oxidatio	8") Medi on. wet	um dense, orange/bro	wn, fine to	coarse	SAND, litt	tle Gravel, trac	e Silt,	
LOGS	.0				15			111.5		S-6b: (12") Har	d, gray, CLAY & SILT	(varves 1/	2" thick)) varved w	ith dark gray S	ilty CLAY	1
SING 2	7				16					(layers	1/16" th	ick), occasional 1/32"	line Sand	parting,	wet			
08/0	8																	
SILLIN					-													
despi								SII TY CI	AY									
NNO 3	0	S-7	23	30-32	12			0.2.1.02		S-7: Ha	ard. arav	. Silty CLAY.occasion	al 1/32" fin	e sand	parting, we	et		
B/SH	1	0.		00.02	16							, , ,			,			
SLISLE	2				18													
D-CAF	_				-													
NCOR 3	3				-													
003	4							103.5										_
E ^[] 848	5																	
CTIVI		S-8	6	35-37	33		H)			S-8: Ve	ery dens	e, gray, fine to coarse	SAND, so	me Silt,	some Gra	avel, wet		
⊴ <u>3</u> 0	o				45													
16:31	7				41													
6/3/11	8						i i i i i i i i i i i i i i i i i i i	LACIAL	TILL									
-100 3	9				-													
2010.0							B											
4 //	0	S-9	6	40-41	24					S-9: Ve	ery dens	e, gray, fine to coarse	SAND. we	et				
	1	-			25		HA-	96.5		Deller		hummond into another bill	bodract					
MaT ^A 4	2				100/0			BEDRO	ск	Roller	oit 12" ac	avanced into probable	Dealock					
- DAT,										Explora	ation terr	ninated at 42' due to re	oller bit ref	usal				
4 VISED	3																	
∫∃ 2 19 19 19	4	MDI E					K6.											
	G	- Ge	oprob	e			NO.											
SEHO	S U	- Spl - Une	nt Spo disturt	on bed Sampl	le													
BO	R	- Coi	re Rur	า											Pa	ge No. <u>2</u>	of	

										PR	OJECT		Boring	g No:. B-10	3					
		λ							Cono	ord Co	rliala Uiah Sahaal		Boring	g Location: Courtyard Are	ea					
			O	$\mathcal{D}\mathcal{I}$	S				CONC		nisie nigh School									
							-			001			Check	ked by: K. Am	idon					
E	ngine	erin	g a Sust	ainab	le Fu	uture	N	obis	File No:		84890.00		Date : Date I	Start: <u>May 16, 2011</u> Finish: <u>May 16, 2011</u>						
Co	ontracto	or:	New Hamp	shire B	oring,	Inc.	_ Rig ⁻	Гуре	e / Model	:	B-53 Mobile Track		Grour	nd Surface Elev.:~	158.5 ft.					
Dri	iller:		Ja	mes			Ham	mer	Туре:		Safety Hammer		Тор-о	f-Riser Elev.:						
No	bis Re	p.:	C.	Rousse	au		Ham	mer	Hoist:		Rope & Cathead		Datun	n:						
			Drilling N	lethod		Samp	ler				Gro	undwater (Dbserva	ations	i					
Ту	ре		Drive and	Wash		Split-Sp	oon	X 0!	Date 5/16/11	Time 13.54	Depth Below Ground (ft.) 12	Depth of Ca	sing (ft.) C	Depth to Bottom of Hole (ft.)	Stabilization T	Time Ilina				
Siz	ze (in.)		4"			2 ID			0, 10, 11	10.01	12				During Diri					
Ad	vancer	nent	Drive and	Wash	14	10-lb Ha	mmer	_												
1	S	AMPLE	INFORMAT	ION		LITI	HOLOGY	/								S				
Depth (fl	Type & No.	Rec (in.)	Depth (ft)	Blows/ 6 in.	Ground Water	Graphic	Stratum Elev.(ft.)			SA	MPLE DESC	RIPTION	١		REMAR				
	S-1	15	0-2	8		<u>×1/,</u> .	TOPSO	IL _	S-1a (6	5"): Medi	um dense, dark brown	, fine to me	edium S	AND, some Organic Silt,	moist					
1				11			130.0	_/	S-1b (9 moist	"): Medi	um dense, brown/oran	ge, fine to	coarse	SAND, trace Silt, trace G	ravel,					
2				4																
2				-																
<u>r</u>																				
4 0.500				-																
บา ยุ่ง																				
BORI	S-2	12	5-7	16					S-2: De	ense, bro	own/orange, fine to coa	arse SAND	, little G	Gravel, little Silt, moist						
O II				14																
				20																
8 KINGS																				
SIBOF																				
9 10 10																				
10 SHI		10	10.10				SAND		S 2. 1/	nu dono	o orongo light brown	fine SAND		Silt stratified ovidation la	vora wat					
망 문 11	5-3	18	10-12	22					GW pro	bable a	t 12'	IIIIe SAND	, some		yers, wet					
ONCO				31	_															
068				42	Ā															
13 13																				
FOA 14																				
0-10-																				
110	S-4	16	15-17	12					S-4: De	ense, ora	ange/light brown, fine t	o medium	SAND,	trace Silt, stratified oxida	tion layers,					
16				20					wet											
17				24 26																
2010.																				
AM 18																				
AT 20																				
DAT	S-5	18	20-22	17					S-5: De	ense, ora	ange/brown, fine to me	dium SAN	D, little	Silt, stratified oxidation la	yers, wet					
ISED (ISED				20																
ଳ <u>୍</u> 22				27																
Е ГО	G - Ge	oprob	e		EIVIAR	K9:														
호 S - Split Spoon 표 U - Undisturbed Sample																				
BOF	R - Co	re Ru	n '											Page No. <u>1</u>	of 2	_				

											PR	OJECT		Boring	g No:	B-10)3	
										Conc	ord Ca	rlisle High School		Boring	g Location: Co	ourtyard Ar	ea	
				O	97	S				CONC	Cor	icord. MA	<u> </u>	0				
								-						Dete	Ked by:	K. An	lidon	
	En	igine	erin	g a Sust	tainab	le Fu	iture	N	lobis	s File No:	•	84890.00		Date	Finish: <u>Ma</u>	y 16, 2011 ay 16, 2011		
	Con	tracto	r: I	New Hamp	oshire B	oring,	Inc.	Rig	Туре	e / Model	:	B-53 Mobile Track		Grour	nd Surface Eler	v.:~	158.5 ft.	
	Drill	er:		Ja	imes			Ham	nmer	r Type: _		Safety Hammer		Тор-о	f-Riser Elev.:			
	Nob	is Rep	o.:	С.	Rousse	au		_ Harr	Imer	r Hoist: _		Rope & Cathead		Datur	n:			
				Drilling N	/lethod		Samp	ler		Date	Time	Gro Depth Below Ground (ft.)	Depth of Ca	Dbserva	ations	n of Hole (ft)	Stabilization	Time
	Тур	e		Drive and	i Wash		Split-Sp	oon	¥ 0	05/16/11	13:54	12	12.0)			During Dr	illing
	Size	e (in.)		4"			2 ID		┢									
	Adv	ancen	nent	Drive and	l Wash	14	0-lb Ha	mmer										1
	h (ft.)	S/	AMPLE	INFORMAT		und	LITI 2	HOLOGY	(SA			A			ARKS
	Dept	l ype & No.	(in.)	(ft)	Blows/ 6 in.	9 B R	Graph	Stratum Elev.(ft	1/ .)			Ur			.			REM
	23				-													
	24				-			SAND)									
Ŀ	25	S-6	12	25-27	85			133.5		S-6: Ve	ery dens	e, orange/brown, fine t	to coarse S	AND, s	ome Silt, little	Gravel, tra	ce rock	_
DGS.G	26				56					fragme Roller t	nts, moi hrough (st cobble/boulder from 27	7'-27.5'					
NGLO	27				71													
G\BOR	28				_													
RILLIN	29							LACIAL	TILL									
NGS-I	30				-													
S\BORI	50	S-7	4	30-32	36					S-7: Ve	ery dens	e, coarse SAND, trace split spoon	e Silt, moist					
H 31SLE H	31				51					p								
-CARL	32				49			126.5		Explora	ation terr	ninated at 32'						_
ICORD	33				-													
30 CON	34				-													
VE\848	35																	
D:VACTI	36				-													
16:31 - (37				-													
6/3/11	38				-													
0.GDT -	39	39																
AY 201	40				-													
PLET M	41																	
A TEM.	42				-													
- DAT/	42]													
/ISED	43				-													
G RE	44 S	AMPLE		 	R	EMAR	KS.											
OLE LC	G	G - Ge	oprob	e														
OREHC	U L	J - Un 2 - Co	disturt re Rur	bed Samp	le										Dogo M	0 2	of 2	
ы	1.	. 50		•											r aye N	v. <u> </u>		_

										PR	ROJECT		Boring	g No:. B-1	04					
			$T \sim 1$						Conc	ord Ca	urlisle High School		Boring	g Location: Grass Island	North of B-2	202,				
			O	\mathcal{I}	S		_		00110	Cor	ncord. MA		West	Building	• •					
							_						Dete	Ked by: K. An	lidon					
Er	ngine	erin	g a Sust	tainab	le Fi	uture	N	lobi	s File No:		84890.00		Date	Finish: May 16, 2011	1					
Con	tracto	r:	New Hamp	oshire B	oring,	Inc.	Rig	Тур	e / Model	:	B-53 Mobile Track		Grour	nd Surface Elev.:	∼166 ft.					
Drill	er:		Ja	imes			Ham	nme	r Type: _		Safety Hammer		Тор-о	f-Riser Elev.:						
Nob	is Rep	o.:	C.	Rousse	au		Ham	ıme	r Hoist:		Rope & Cathead		Datur	n:						
			Drilling N	/lethod		Sampl	er	_	Date	Time	Gro Depth Below Ground (ft.)	Undwater (Observa	Itions	Stabilization	Timo				
Тур	е		Drive and	l Wash		Split-Spo	oon	¥(05/16/11	16:00	18	25.	0	25.0	3.5 hrs	3				
Size	e (in.)		4"			2 ID														
Adv	ancem	nent	Drive and	l Wash	14	40-lb Har	nmer													
(ft.)	SA	AMPLE	INFORMAT	ION	nd er		IOLOG	Y	-							RKS				
Depth	Type & No.	Rec (in.)	Depth (ft)	Blows/ 6 in.	Grou Wati	Graphic	Stratum Elev.(ft.	ו /)			SA	MPLE DESC	RIPTION	١		REMAI				
	S-1	21	0-2	9		<u>x1 /y</u> • • • • \	TOPSO	DIL i 7	S-1a (6	"): Dens	se, dark brown, ORGA	NIC SILT,	little fine	e Sand, little root fibers, r	noist					
				15			100.0		S-1b (1	5"): Der	nse, orange, fine to coa	arse SAND	, some	Gravel, trace Silt, dry						
2				19																
3																				
4				-																
_																				
5	S-2	15	5-7	15					S-2: Me	edium d	ense, light brown, fine	to coarse \$	SAND, 1	race Silt, moist						
6				14																
7				17																
8				-																
				-																
9							SAND	`												
10	S-3	16	10-12	18			OANE	,	S-3: De	ense. ora	ange, fine to medium §	SAND. little	Silt. st	ratified oxidation lavers, w	vet					
11				15						,			,	,						
12				18																
13				-																
				-																
14				-																
15	61	14	15 17	20					S 4: 1/0	n dono	o orongo/brown fino f			tta Silt litta Craval avida	tion wat	1				
16	3-4	14	13-17	20					3-4. Ve	i y uens	e, orange/brown, nne i		AND, II		alon, wei	1				
17				30 25																
10																				
					Ā															
19																				
20	С Г	1 =	20.22						C E D		ango/brown fine to	dium CAN	D trace	Silt 20 E inch lance of (
21	3-5	10	20-22	22					layer at	anse, ora :∼21', w	et	UIUIII SAN	ם, uace		SILY GLAT					
22				23 18																
23							SAND)												
24 S	 Amplf	IDEN	 TIFICATION		=MAF	KS. [∙:•;•]	142.0)												
	- Ge	oprob	e) Insta	alled te	mporar	ry w	ell with so	reened	pvc from 10' to 15'.									
	s - Spl J - Un	distur	bed Samp	le																
F	۲ - Co	re Ru	n											Page No. <u>1</u>	of	_				

	1		lol	bi	S		-		Conc	PR ord Ca Cor	ROJECT Irlisle High Schoo Incord, MA	<u> </u>	Boring Boring <u>West</u> Checl	g No:B-1 g Location: _Grass Island Building ked by:K. Ar Start:May 16, 2011	04 1 North of B-2 nidon	<u>202,</u>
Er	ngine	erin	g a Sus	tainab	le Fu	iture	9 N	lobis	File No:		84890.00		Date	Finish: May 16, 201	1	
Cor	ntracto	r:l	New Ham	pshire B	oring,	Inc.	_ Rig	Туре	/ Model	:	B-53 Mobile Track	(Grour	nd Surface Elev.:	∼166 ft.	
Dril	ler:		Ja	ames			_ Ham	mer	Туре: _		Safety Hammer		Тор-о	of-Riser Elev.:		
Not	ois Rep	o.:	C.	Rousse	au		_ Ham	nmer	Hoist: _		Rope & Cathead		Datur	n:		
-			Drilling N	Method		Sam	pler		Date	Time	Gro Depth Below Ground (ft.)	Depth of C	Observa asing (ft.)	ations Depth to Bottom of Hole (ft.) Stabilization	Time
Тур	e		Drive and	a wasn		Split-S	poon	¥ 05	5/16/11	16:00	18	25.	0	25.0	3.5 hrs	S
Size	e (in.)		4"			2 1[D	┢								
Adv	ancen	nent	Drive and	d Wash	14	l0-lb Ha	ammer									
h (ft.)	SA	AMPLE	INFORMAT		und	 .≌	FHOLOGY	(6			M		ARKS
Dept	Type & No.	Rec (in.)	Depth (ft)	Blows/ 6 in.	Gro	Graph	Stratum Elev.(ft.	1/ .)			5/	AMPLE DES	JRIPTIO	N		REM
																+
25	S-6	18	25-27	15					S-6: De	ense, ora	ange/brown, SILT, sor	me fine to r	nedium	Sand, 0.5 inch lense of	Silty CLAY	
26				13					layer a	t ~26', w	vet					
27				18												
28				-												
OGS.(1												
29 20 20							SAND A	ND								
80 80 80 80	S-7	22	30-32	18			SILT		S-7 [.] De	ense lia	ht brown fine SAND	some Silt	stratified	d oxidation lavers wet		
0 1 31				20					0.12			ooo o,				
R 2 32				27												
UNN NNN NNN NNNN NNNNNNNNNNNNNNNNNNNNN				-												
1S/BO																
				-												
35 U	5-8	23	35-37	24			131.0		S-8' D	anse lia	ht brown fine to medi		litte Silt	stratified oxidation lave	rs wet	_
- 26 36	0-0	25	55-57	25					5-0. De	ense, ng	ni brown, nne to medi	um SAND,		, stratified oxidation laye	13, wet	
20 37				23												
1830																
&0 ∐																
5 <mark>.39</mark>				-												
<u>-</u> 40		10	40.40				SAND)					14			
<u>9</u> 10 11	5-9	13	40-42	21					2-9: De	ense, gra	ay, time to coarse SAN	iu, trace S	it, red o	oxidation, wet		
/2/2 - 42				24												
				_												
ég 44 ⊢																
Ч 45		_								_						
≝ ≰ 46	S-10	23	45-47	18 20					S-10: [Dense, li	ght brown, fine to mee	dium SANE	, litte Si	ilt, stratified oxidation lay	ers, wet	
				22			SAND)								
				19		<u>، * ، * ، *</u>	119.0		Explora	ation teri	minated at 47'					-
ଳ <u>48</u> ଏ ଏ																
	G - Ge	oprob	6		LIVIAR											
	S - Sp J - Un	lit Spo disturl	oon bed Samp	le												
ja P	R - Co	re Ru	n											Page No. 2	of	
PREVIOUS BORING LOGS BY OTHERS

	а., Турски (Услен) Турски (Услен)				FR.	H FOIR		BonoiNo	B-1					
T C	1997 - 1997 -	in Lon th	C	oncord-C	arlisle R	caional H	iah Scho	ol	Sheet 1 of	1				
				Shoora c	Conco	rd, MA	griobilo	SIL NO. STAT	W1912	_				
				117.	-	1 COLORAD	unt altrast	Reviewby	James Handa	nya				
CQLCO.		Subsur	tace Dr	illing	-		Necalici Deletation	Jee Explo	NA	an				
Line State		lacon	Mamm	one	-				6/15/05	-				
		Semeline Protocol	Harris I				i i i i i i i i i i i i i i i i i i i	oning Water Readings	(See Notes)					
	we a notad the	orings were a confo	shed J	sing 4 m	n anekte	Data		SPECIFIC FOROMA	Depth to Water					
eleichol	ow stem aug	ers a: Simple I were:	ecover	id using	er 24 nicht	6/15	Drilling	17±'	5±'					
o du incl	non-sampler.						2.00							
		Sample Data					andered		Toole Invitor					
SNo !	Peril (i):	Blows per 6 in 1	Pen	Rea	Rem	i ch	ingle is							
5-1	0-0.5	1	6	6		Topsoil	Fill05	Dry dark brown fine SAND Medium dense, dry, or	and SII I little (+) Or ange-tan, fine to	m				
5-1A	0.5-2	4-7-12	18	10	1.4			SAND, trace (+) coarse	e Gravel, trace Sil	L .				
5-2	2-4	10-13-10-9	24	18				SAND, little (-) fine to	coarse Gravel, tra	ce				
-	1 million 1		-											
6.3	5.7	8-18-15-14	24	18				Dense, wet, grayish-bro	wn, fine to mediu	m S				
5-5	57	U U U H		10				little fine to coarse Gra	ivel, trace silt.					
5-4	7-9	10-14-12-10	24 20					Medium dense, wet, grayish-brown, fine to medium SAND, trace (+) fine Gravel, trace Silt						
1						Sa	ind							
			2.54		(1				atala kasar Barra					
5-5	10-12	3-7-10-12	24	12	2			SAND, little (+) fine to	ND, little (+) fine to coarse Gravel, trace t.					
								Jun						
-			-	-	-									
5-6	15-17	7-7-7-8	24	12	3			Medium dense, wet, bro	wh, fine to coars	e 9				
						17	.0	The to coarse of a						
					6.00			Bottom of boring at 17.0	O± feet.					
			1											
	-			-										
				-	-									
-					-									
	-			-	1	5								
1.1	-		. 1											
120 200	1	1	0?											
							- 1							
					1.000									
	1				23									

energine E The F

(19)		$\frac{1}{21}$		23
A GREL 136 P3 C 1-0- 4 TOPSOIL T 2-6- 3 FINE TO MED T 2-6- 6 SAND 15 CRS 20 SAND 15 CRS 20 SAND 15 SAND 15 SAND 15 SAND 15 SAND 15 SAND 22 SAND 1 588 29 30 20 20 20 20 20 20 20 20 20 2	A GREL 132 B C SWT: 1:0" 1 TOPSOIL 2:0" 3 FINE SAND 10 12 CR3 SAND 12 SOME GRAVEL 19 30 31 30 29 11:6" 2 93 3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A GREL 195 P5 C 2 TTOP5012 1'0 2 FINE 3'0 3 3 3 9 3 3 10 3 3 10 5 3 10 5 3 10 5 5 15 FINE TO 1 6 21 MED SAND 7 24 2 8 9 24 2 8 9 24 2 8 $11'0$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

	BORING NOTES
	2 COL 'A' BLOWS / FT ON 2/2' CASING
Matteries and Statements	3. COL. "C" BLOWS/ G" ON 2" O.D. SAMPLER
 A second s	4 HAMMERS, CASING; 300, 24 FALL; SAMPLER, 140-30" FALL 5. GWT- GROUNDWATER TABLE

6. BORINGSTAKEN MAY 1958 BY ENGINEERING SERVICES, INC.

BORING LOCATION PLAN SCALE: 1".100'

13	n an an ar An an an an an		an share a sa an sa an sa	n 1966 - S. Y. A. Jones, Scotter and State of State 19				Antonio Algori	 1 Doubledinger 	(15)			anal (Sector 1) - Sign
73	B	G		Ą	GREL 131	в	<u> </u>		A	GREL 131	B	C	,
			GWT-1-0"	2	TOPSOIL			GWT=1-0"	2	TOPSOIL	1		
	, og av av e		_1=6"	2	h de				3	FINE SAND &			
TO CRE			in a set of the state of the s	6	CHS 10 MED		<u> </u>	n 19 m mar an ann an	4	SILT			
LITTLE	na paramatan na sana araw	FINAL CONTRACTORS AND		12	GRAY SAND	1997 - 19		4-0	0				
SAND		45		18	TRACE	1	58	anan serian nenan nenan masarat ira i jaya i antas Masaratan menembahan kari ira ira metant ira ira ira (n. 1900) nenat	12	CRS TO FINE		5	
		5		22	2 2 A 17		8		22	SAND		8	
				31	GRAVEL				31				
				21					42				
_	2	456	NI-G-	J		Z	101011	11-6"	22	-	2	91112	
725 CONAT	A -T-E-TA			· · · · · · · · · · · · · · · · · · ·	+	t		ومساوية والمعارية والمربوع والالكار والمراكبة	an an air an				in constant

A. B. ONDERDONK CONSULTING ENGINEER ROBERT P. LATHROP, Associate 2512 MAIN STREET GLASTONGURY, CONN.

and the second
69

		- 4		na an a			
				Stanger (1999) All Stanger (1999)			
*	Nº 22-12+30-	750 RT		Nº23-6+6	8-751'RT		
Sacrade Ch						x	
		,					- -
	-	,					
		х 					
O'RT				·			
							Nº 19 - 4+70-375 RT
				Nº17-9+24-337	'RT		
					· · · ·	• • <u>• • • • • • • • • • • • • • • • • </u>	- 6+37-260"RT
		an a	44 - 11 - 1				
		0,0		an a			540
	Nº 16 - 10+34	4-21'LT		4	· · · · · · · · · · · · · · · · · · ·		
				generation and the second			Nº21-6+02-93'IT
					Nº 20-7+97-	- 42'LT	
	5. er., 						
	2						
	***	.20"W					
		6°-09'					
		n l			,		
•	8	• Nº 14	1 - 10)+12-446'LT			
				ι, Δ.			
	т	Nº 15	- 10+	-12-624°LT			
¢	N 53°	-08'-10"W	nan ang si sa kana diji 29 - 2 - Ada				
		e e		х		. ; 5	
			92 - H				
			+				
	,						
			a				
		$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i$	×				
		2 ¹ .		and a second			
Ł	e Se						
		*			· · ·		
		e Al constante de la constante de Al constante de la constante de					
	م کر						
	4. *				- i go - 1 - -		
	Р - -						
	r. E			14. 	• •		
		CONCO	RD	D - CARL	ISLE H	HIGH	SCHOOL
A CARDON CONTRACTOR	TH DF MASS	WARREN	7) N 1	H. ASHLEY,	A. I. A	MASSA ., AR	CHUSETTS
CON MON	ARTHUR B. NDERDONK	740 NORTH	MA	IN STREET,	WEST	HARTFORD,	CONNECTICUT
	GISTERY STA	CONT. 1"- 1001				<u>/ 1 N</u>	DRAWN C 11 14
		DATE7,1958	<u>3</u>	SASAKI, WALKER	& ASSOCIA	ATES, INC.	CHECKED R.P.L. APPROVED A.B.O.
		HUSTERED ARCHITE		ARTHUR RD	UCE ONDER	DONK	2L
		INO. 109 W. HARTFORD CONN.		STRUCTI ENGELHARDT, E	JRAL ENGINEER	LEGGETT	JJ
		TH OF WASSTAT		& EDUCATION	CORNELL	S	S-1

LABORATORY TESTING

Client:	Nobis Eng	jineering, Inc.				
Project:	Concord (Carlise H.S.				
Location:	Concord,	MA			Project No:	GTX-10809
Boring ID	: B-202		Sample Type	: jar	Tested By:	jbr
Sample I	D:		Test Date:	05/19/11	Checked By:	jdt
Depth :	15-17 ft		Test Id:	208583		
Test Com	ment:					
Sample D	escription:	Moist, olive si	ilty sand			
Sample C	omment:					

Particle Size Analysis - ASTM D 422-63 (reapproved 2002) 0.375 in #100 #200 **09**# #40 C 100 90 80 70 60 Percent Finer 50 40 30 20 10 0 0.01 0.001 1000 100 10 1 0.1 Grain Size (mm) % Cobble % Gravel % Sand % Silt & Clay Size ____ 0.1 86.1 13.8 Sieve Name Sieve Size, mm Percent Finer Spec. Percent Complies Coefficients D₈₅=0.2276 mm D₃₀ = 0.1024 mm 0.375 in 9.50 100 D₆₀=0.1692 mm $D_{15} = 0.0768 \text{ mm}$ #4 4.75 100 #10 2.00 100 D₅₀ = 0.1502 mm D₁₀=0.0532 mm #20 0.85 100 $C_u = N/A$ $C_c = N/A$ #40 0.42 99 0.25 93 #60 **Classification** #100 0.15 50 ASTM N/A #200 0.075 14 Particle Size (mm) Percent Finer Complies ----Spec. Percent AASHTO Silty Gravel and Sand (A-2-4 (0)) 0.0378 6 0.0241 2 0.0138 Sample/Test Description Sand/Gravel Particle Shape : ---0.0097 0.0069 Sand/Gravel Hardness : ---0.0049 ----0.0034 -------0.0014 1

LIMITATIONS

LIMITATIONS

Subsurface Conditions

- 1) The analyses and conclusions in this report are based in part upon data obtained from subsurface explorations completed by others. Nobis has not verified the accuracy of the test boring logs. The nature and extent of variations between these explorations may not become evident until further exploration. If variations appear evident, it will be necessary to re-evaluate the conclusions and recommendations of this report.
- 2) The generalized soil conditions described in the text are intended to convey trends in subsurface conditions and have been developed from widely spaced test borings. Actual soil conditions are likely to vary. Refer to the test boring logs for more specific information.
- 3) Water level readings have been made in the test borings at the times and under the conditions stated on the boring logs. Fluctuations in the level of groundwater will occur due to variations in rainfall and other factors different from those prevailing at the time measurements were made.

Review

1) In the event that any changes in the nature, design, or location of the proposed project are planned, the conclusions and recommendations contained in this report shall not be considered valid unless the changes are reviewed and conclusions of this report modified or verified in writing by Nobis Engineering, Inc. It is recommended that this firm be provided the opportunity for a general review of final design and specifications in order that earthwork and foundation recommendations may be properly interpreted and implemented in the design and specifications.

Use of Report

1) This report provides the details of the preliminary geotechnical recommendations prepared for the Concord-Carlisle High School (Options 6R1 and 12), in Concord, Massachusetts. This work has been completed in accordance with generally accepted geotechnical engineering practices and is for design purposes. Contractors reviewing this report should do so with the understanding that its scope is limited to design considerations only. No other warranty, expressed or implied, is made.

June 16, 2011 File No. 84890.01 **VIA E-MAIL**

Lisa Pecora-Ryan, Architect, LEED[®] AP OMR Architects 543 Massachusetts Avenue West Acton, MA 01720 (978) 264-0160 x 235 Ipecoraryan@omr-architects.com

Re: Option 14 Preliminary Borings Concord-Carlisle High School Concord, Massachusetts DSA Project No. 11017

Dear Ms. Pecora-Ryan

This letter presents Nobis Engineering, Inc.'s (Nobis) preliminary boring information collected for Option 14 as part of the Feasibility/Schematic Design Phase of the Concord-Carlisle High School in Concord, Massachusetts.

We understand that Option 14 includes a 4-story building with a footprint of approximately 88,500 square feet with the lowest level at approximately El. 170. This proposed school option is location south of the existing school on the hill. The proposed building would be 2 to 29 feet below existing grades.

TEST BORINGS

New Hampshire Boring, Inc. (NHB) of Brockton, Massachusetts drilled two (2) test borings, designated B-201 through B-202. The test borings were observed and logged by Nobis personnel. Previously, The Geotechnical Group drilled boring B3 in June 2005 and Engineering Services drilled Borings B-1 and B-2 in 1958 near the Option 14 location. The location of these previous explorations and the accuracy of those logs have not been verified by Nobis. Test boring logs are attached. The approximate locations of the test borings are shown on Figure 1, Boring Location Plan with is attached.

SUBSURFACE CONDITIONS

Borings B-201 and B-202 were drilled to 62 and 77 feet below grade and encountered approximately 47 feet of medium dense to dense sand, over 7 to 9 feet of a very stiff to hard varved silt and clay, over 8 to 9 feet of dense sand, over a very stiff to hard varved silt and clay. Boring B-3 was drilled to 27 feet and encountered 25 feet of dense sand and gravel over more than 7 feet of medium dense fine sand. B-1 and B-2 were drilled to 41.5 feet and encountered

Client-Focused, Employee-Owned

www.nobiseng.com

Nobis Engineering, Inc. 18 Chenell Drive Concord, NH 03301 T (603) 224-4182 Nobis Engineering, Inc. 585 Middlesex Street Lowell, MA 01851 **T** (978) 683-0891 more than approximately 41.5 feet of sand with varying amounts of silt. The borings by others were terminated above or near proposed footing levels.

Groundwater was encountered approximately 30 to 47 feet below grade between approximate El. 140 and 142 in B-201 and B-202. Groundwater was not encountered in the previous borings in this area. Groundwater will fluctuate with the season and the amount of precipitation, and may be different at the time of construction. Groundwater levels measured during drilling may not reflect stabilized water levels.

PRELIMINARY GEOTECHNICAL COMMENTS

This building will require a cut of approximately 2 to 29 feet. More than 20 feet of very stiff to hard varved silt and clay was encountered more than 20 feet below the proposed building location. We anticipate that the increase of stress on the clay layers will be minor due to the planned cuts and significant settlements are not anticipated. Additional borings and an analysis are needed to better define the estimated settlement from the building loads.

We recommend that the building be supported by shallow spread footings bearing on the natural sand. Spread footings should be designed using a maximum net allowable bearing pressure of 2 tsf for footings bearing on these materials.

Based on the groundwater elevations measured in the borings, perimeter and slab underdrains are not required.

Thank you for the opportunity to be of service. We look forward to providing you with these geotechnical services. Should you require additional information, please contact us.

Very truly yours,

Nobis Engineering, Inc.

Kurtis Amidon, P.E. Senior Project Manager Kurt Jelinek, P.E. Senior Project Manager

Attachments:

Figure 1, Preliminary Boring Location Plan Recent Exploration Logs by Nobis Previous Boring Logs by others

										PR	OJECT		Boring	g No: B-20	1		
		7							Conc	ord Ca	rliele High School		Boring	g Location: Soccer Field,	Northeast		
		1		01	22	S		-	CONC	Cor	nord MA		Corne	۲ 			
								_		001			Check	ked by: K. Ami	don		
E	Eng	gine	ering	g a Sust	ainab	le Fu	uture	N	obis File No		84890.01		Date : Date I	Finish: June 7, 2011			
С	onti	ractor	:_1	New Hamp	shire B	oring,	Inc.	Rig	Fype / Mode	:	CME 550 ATV		Grour	nd Surface Elev.:	188 ft.		
D	rille	er:		Bob Th	nompso	n		Ham	mer Type: _		Automatic Hammer		Тор-о	f-Riser Elev.:			
N	obis	s Rep	.:		BTW			Ham	mer Hoist:		Automatic		Datun	n:NGVD192	29		
_				Drilling N	lethod		Sample	ər	Data	Timo	Gro	undwater C	Observa	Itions	Stabilization	Time	
	ype			Drive and	Wash		Split-Spc	oon	¥ 06/08/11	07:05	47.8	47.0))	48.3	15.5 hr	S	
Si	ize	(in.)		4"			1-3/8 II	2									
A	dva	incem	ent	Drive and	Wash	14	0-lb Har	nmer									
(#)		SA	MPLE	INFORMAT		ind	LITH	OLOG	<u>/</u>							RKS	
Danth	nebri	Type & No.	Rec (in.)	Depth (ft)	Blows/ 6 in.	Grou Wat	Graphi	Stratum Elev.(ft.	/)		SA	MPLE DESC	RIPTIO	N		REMA	
1	ı F	S-1	15	0-2	1			TOPSO 187.5	IL S-1A (4 —∕ S-1B (1	4"): Tops 11"): Loc	soil. use, brown fine to med	ium SAND,	little Si	ilt, trace roots, moist (Sub	soil).	-	
GPJ					5		<u>NU</u>	SUBSO	IL `	,							
RIES.	2				8		<u>1, x1</u>	186.0								-	
B 00 SE	3				-												
GS_2	1 -								Drill Cł	natter at	about 3.5 feet bgs.						
D LO	_																
BORIN	>				-												
	3																
- PRIL	,																
RINGS																	
SIBOF																	
H SLEH)				-												
1 ARL	0												_				
	1	S-2	12	10-12	5				S-2: M top of s	edium de sample).	ense, brown fine to me	dium SAN	D, trace	Silt, wet (with a piece of	gravel in		
ONO:					10			SAND									
12	2				9												
⁸ ∐_1	3																
LOAN 1	4																
:24 - 0																	
13	o 								Wash	from abo	ut 10 feet to 19 feet be	gs consists	of coar	se sand size particles.			
- 6/16	6																
	7																
1 2010	ļ																
T MA																	
	9																
2 IA	0								_	- III			.		,		
DA 2	1	S-3	13	20-22	8				S-3A (4 S-3B (9	4"): Med 9"): Med	um dense, brown fine um dense, brown fine	to medium to medium	SAND SAND	, little Silt, moist (stratified , trace Silt, moist.).		
VISED	·				12												
ມ <u>2</u> ປ	2 SAI	MPLE	IDENT	 	15 RI	EMAR	KS:										
	G	- Geo	oprob	e													
REHC	U S	- Spi	disturt	bed Sampl	е												
ВÖ	R	- Cor	e Rur	ו										Page No. <u>1</u>	of <u>4</u>	_	

										PR	OJECT		Boring	g No: B-20	1	
		7	Tal	1					Conc	ord Ca	rlisle High School	I	Boring	g Location: Soccer Field,	Northeast	
		\sum	O	22	S		-		Conc	Cor	icord. MA	<u> </u>	Corne			
					-		-						Check	Ked by: K. Am	don	
E	ngin	neerin	g a Sust	ainab	le Fu	uture	N	lobis	File No:		84890.01		Date I	Finish:June 8, 2011		
Co	ntract	tor:	New Hamp	oshire B	oring,	Inc.	_ Rig ⁻	Гуре	/ Model	:	CME 550 ATV		Grour	nd Surface Elev.:	188 ft.	
Dri	ller:		Bob Th	nompso	n		Ham	mer	Type: _		Automatic Hammer		Тор-о	f-Riser Elev.:		
No	bis R	ер.:		BTW			Ham	mer	Hoist: _		Automatic		Datun	n: NGVD192	29	
			Drilling N	lethod		Samp	ler		Data	Time	Gro	oundwater (Observa	tions	Stabilization	Time
Ту	be		Drive and	l Wash		Split-Sp	oon	¥ 06	6/08/11	07:05	47.8	47.0) D	48.3	15.5 hrs	S
Siz	e (in.)	4"			1-3/8	ID									
Ad	vance	ement	Drive and	l Wash	14	0-lb Ha	mmer									
(ft.)	5	SAMPLE	INFORMAT	TION	- bu	LITH	HOLOG	ŕ								RS
Depth	Type & No	e Rec o. (in.)	Depth (ft)	Blows/ 6 in.	Groui Wate	Graphic	Stratum Elev.(ft.	/			SA	MPLE DESC	CRIPTIO	N		REMAF
23																
CGPJ	-															
⁸⁰ 25	S-/	1 13	25-27	11					S-4 · M	odium da	anse, brown fine to me	adium SAN	D trace	fine Gravel (sub-angular) trace	
ଞ୍ <u>ଚ</u> 26		10	20 21	12					Silt, mo	oist.			2, 11400		,	
	-			14												
BOR									Wash f	rom abo	ut 25 feet to 30 feet b	gs consist o	of coars	e sand size particles.		
9 <u>28</u>	-			-												
29																
NN NN 30	-															
S/BOI	S-5	5 13	30-32	13					S-5A (2	2"): Medi	um dense, brown fine	GRAVEL,	little fin	e to coarse SAND, trace S	Silt, wet.	
± 31	-			9 10			SAND		S-5B (*	11"): Me	alum dense, brown fin	e to mediu	m SANL	J, trace Slit, moist.		
SI 32				12												
CRD-03	-								Wash f	rom abo	ut 32 feet to 35 feet b	gs consists	of coar	se sand size particles.		
0 8 8 34	+															
⁴⁸ 35																
ACH	S-6	5 12	35-37	9					S-6A (2 S-6B (2	2"): Medi 10"): Me	um dense, olive fine \$ dium dense, orange/b	SAND, little rown fine to	Silt, we mediu	.t. m SAND, trace Silt, moist		
54-0				13					(stratifi	ed).						
37 1 37				15												
⁽⁾																
100 30	-			-												
2010.																
¥ ₩ 40	S-7	7 12	40-42	11					S-7A (6	5"): Medi	um dense, olive fine \$	SAND, little	Silt, mo	pist.		
41				13					,	,	,					
Mar 42	-			16 18			:===	:=		3"): Verv	stiff, olive clayey SIL	Γ, some fine	e Sand	(stratified), moist.		
DAT									S-7C (3"): Med	ium dense, orange/bro	own fine to	medium	SAND, trace Silt, moist.	· ^	
43 8																
A4				1												
	G - G	LE IDEN Geoprof			EMAR	KS:										
EHOL	S - Š U - II	Split Spo Indistur	oon bed Samp	le												
BOR	Ř - Č	Core Ru	n	-										Page No. 2	of <u>4</u>	_

	Nohis								PR	OJECT		Boring	No:. B-20	01	
	5		T_1	1				Con	oord Co	villala Lligh Cabaal		Boring	Location: Soccer Field,	Northeast	
			O	01	S		-	Con		inisie High School		Corne	r		
							-		00			Check	ed by: K. Am	idon	
E	ngine	erin	g a Sust	tainab	le Fi	uture	— N	obis File N	0.	84890.01		Date S	Start: June 7, 2011		
									0	04090.01		Date F	Finish:June 8, 2011		
Co	ntracto	r: <u>I</u>	New Hamp	oshire B	oring,	, Inc.	Rig	Гуре / Mod	el:	CME 550 ATV		Groun	d Surface Elev.:	188 ft.	
Dri	ller:		Bob Th	hompso	n		- Ham	mer Type:		Automatic Hammer		Top-of	f-Riser Elev.:		
No	bis Rep).:		BTW			- Ham	mer Hoist:		Automatic		Datum	n: NGVD19	29	
			Drilling N	/lethod		Sampl	er	Data	Timo	Gro	undwater O	bserva	tions	Stabilization	Timo
Ту	be		Drive and	d Wash		Split-Sp	oon	¥ 06/08/1	07:05	47.8	47.0	ing (n.)	48.3	15.5 hrs	S
Siz	e (in.)		4"			1-3/8 I	D					<u>^</u>			
Ad	vancen	nent	Drive and	d Wash	14	10-lb Hai	mmer								
(H.)	SA	MPLE	INFORMAT	TION	p =	LITH	IOLOG	(1	SKS
bepth	Type & No.	Rec (in.)	Depth (ft)	Blows/	Grour Wate	raphic	Stratum Elev.(ft.	/		SA	MPLE DESCR	RIPTION	N		EMAF
		· ,				U		,							~
45	-								(10)					N	
GP3	S-8	15	45-47	12			CAND	S-8A	(12"): De	nse, orange/brown fine	e to medium	SAND	, little Silt, moist (stratifie	d).	
				22			5AND								
v 47				25			111.0	S-8B	(3"): Haro	I, gray SILT & CLAY ,	trace fine SA	AND (v	arves 1/16" to 1/8" thick)	varved	-
ଅଧି 48					Ā				brange fin	e SAND (varves 1/16*	thick), moisi	t.			
49 28 29				-				Wash	at about	49 feet bgs consists o	f cohesive m	naterial			
<u>9</u> 50															
	S-9	21	50-52	10			arved SII	S-9: V т е 1/4" t	/ery stiff, hick), moi	gray SILT & CLAY (va st.	rves 1/4" thi	ck) var	ved with gray CLAY & S	LI (varves	
NGS				14			CLAY								
R 52				20											
^{SH} щ 53															
				-											
ğ <u>55</u>	S 10	10	55.57	6				\$ 10	\ (4"): \/o	wetiff arow SILT & CL	AV (vanues	1/4" +hi	ick) varyed with gray CL		
δ 0 56	5-10	19	55-57	9			132.3	trace	(-) Sand (varves 1/4" thick), moi	st.	1/4 UII		ατα σι∟τ, 	_
\8489				11				S-10	B (15"): M	edium dense, gray fine	e SAND, trac	ce Silt,	moist.		
₩ <u>57</u>				20											
ĕ. 58															
- 59															
3/112															
- <u>6/</u>	<u>S-11</u>	11	60-62	14				S-11	\ (1"): De	nse, orange fine SANF), little Silt_n	noist			
61 0			00.02	14			SAND	S-11	3 (4"): De	nse, brown/orange fine	to medium	SAND	, trace Silt, moist (stratifi	ed).	
2010				17			5AND	3-110	со). De	nse gray inte to mediu	m JAND, tř		., 110151.		
AND															
<u>63</u>															
DAT]				Drill o	hatter ob	served at about 64 fee	t bgs.				
- 65 8	S-12	18	65-67	9			S-12: Very stiff, gray SILT & CLAY (varves 1/4" to 3/4" thick) varved with gray CLAY &						-		
A 66	66 10							SILT (varves 1/4" to 1/2" thick), occasional gray fine Sand parting, moist.							
	SAMPLE IDENTIFICATION REMARKS:														
HOLE	S - Spl	lit Spo	on on												
SORE	0 - Un R - Co	aisturi re Rui	bed Samp n	ie			Page No 3					of 4			
													-		

	Nobis								PR	OJECT		Boring	g No: B-20)1	
	5		T _ 7	1				Conc	ard Ca	rliala High Cabaal		Boring	Location: Soccer Field,	Northeast	
			\mathbf{O}	21	S		_	Conc		riisie High School		Corne	r		
									COI			Check	ked by: K. Am	idon	
Er	ngine	erin	g a Sust	ainab	le Fu	ture	N	obis File No	:	84890.01		Date S Date I	Start: June 7, 2011 Finish: June 8, 2011		
Cor	ntracto	r: 1	New Hamp	shire B	orina.	Inc.	Ria	Fvpe / Mode	l:	CME 550 ATV		Grour	nd Surface Elev.:	188 ft.	
Dril	ler:		Bob Th	nompso	n		Ham	mer Type:		Automatic Hammer		Top-o	f-Riser Elev.:		
Not	ois Rep	D.:		BTW			Ham	mer Hoist:		Automatic		Datun	n: NGVD192	29	
-			Drilling M	1ethod		Sampl	er			Gro	oundwater (L Dbserva	tions		
Тур	e		Drive and	Wash	5	Split-Spo	on	Date	Time	Depth Below Ground (ft.)	Depth of Ca	sing (ft.)	Depth to Bottom of Hole (ft.)	Stabilization	Time
Siz	e (in.)		4"			1-3/8 I	5	¥ 06/08/11	07:05	47.8	47.0)	48.3	15.5 hrs	S
Adv	()	aant		Weeh	14		omor	-							
Adv					14										6
th (ft.)		Roc	Dopth	Blows/	ound ater	-ie Liir	Stratum	1		SA	MPLE DESC	RIPTIO	N		IARK:
Dep	& No.	(in.)	(ft)	6 in.	βS	Grap	Elev.(ft.	ý							REN
67				14 15											
GPJ 68				-											
ERIES 00															
00 00 00 00 00				-											
ဗ <u>္ဗ</u> 70															
コ り ビ ゴ フ フ フ フ	S-13	18	70-72	10 12			arved SII	S-13:	/ery stiff	gray Clayey SILT and	d fine SANI	D, wet.			
SBOR				16			CLAY								
				20											
- 73 89				-											
NN 24				-											
ISH USH U T5				-											
	S-14	19	75-77	16 20				S-14: I (varve	Hard, gra s 1/8" to	y SILT & CLAY (varve 1/4" thick) varved with	es 1/2" to 1 black Silty	' thick) ' Clay (v	varved with gray CLAY & varves 1/16" to 1/8" thick),	SILT , moist.	
SD-CA				21											
00 77 N				30			111.0	Explor	ation teri	ninated at 77 feet bgs					-
Ŭ 00000 00000 00000 00000 00000 00000 0000															
79 79															
08 Si ACT															
:24 - 0															
11 21 10															
- <u>6/16</u>															
83 O.GDT															
N 2011															
ET M															
ATA T 86															
87															
ő s	AMPLE	IDEN	TIFICATION	I RI	EMAR	KS:		<u> </u>							1
	G - Ge S - Sp	oprob lit Spo	e on												
OR H	J - U່n ຊ - Co	disturi re Rui	oed Sampl า	е									Page No 4	of 4	
۰.													· «go · to +	<u> </u>	_

				PR	OJECT	E	Boring I	No:. B-20	2
A To	This		Conc	ord Co	rlicle High School	E	Boring I	Location: Grass hill, bel	hind southwast
	01S	_	Conc	<u>oiu Ca</u> Car	ord MA	<u> </u>	corner o	of existing building	
				00		(Checke	d by: K. Am	idon
Engineering a Sus	stainable Future	No	bis File No		84890.01	[Date St	art: June 8, 2011	
					01000.01		Date Fil	nish: June 8, 2011	
Contractor: New Han	npshire Boring, Inc.	Rig T	ype / Model -	:	CME 550 ATV		Ground	Surface Elev.:	172 ft.
Driller: Bob	I hompson	Hamr	mer Type: _		Automatic Hammer		I op-of-l	Riser Elev.:	20
	Mathad Camal				Automatic	L			29
	Method Sampi		Date	Time	Depth Below Ground (ft.)	Depth of Casir	ng (ft.) D	Depth to Bottom of Hole (ft.)	Stabilization Time
			¥06/08/11	14:55	30	0.0		58.0	0.4
	1-3/81	, 							
Advancement Drive a	nd Wash 140-lb Har	nmer							
		OLOGY			SAM				ARKS
& No. (in.) (ft)	Blows/ 0 k to be	Stratum / Elev.(ft.)			U.S.	TEE DESCR			REM
S-1 20 0-2		TOPSOIL	S-1A (1	12"): Top	soil.				
	$-\begin{vmatrix} 3\\4\end{vmatrix}$	170.7				<u></u>			
0 3 3 2	5	SUBSOII <u>1</u> 70.0	L	3"): Loos vil).	e, brown fine to coarse	SAND, little	e Silt, tra	ace fine Gravel, trace ro	oots, dry
						7		*	
500									
			Drill ch	atter obs	erved from about 4 feet	t to 5 feet bo	gs. Wa	sh consists of coarse sa	Ind size
5 5			particle	es.		·			
Off S-2 9 5-7			S-2: M	edium de	ense, light brown fine to	medium SA	AND, lit	tle Silt, moist (stratified)	
	8	SAND							
й 7	8								
8 8									
10 10 10 10 10 10			S 24 (). Mod	um danaa light brown fi	ina ta madiu		ND little Silt maint (atra	tified)
0 11 10-12	4								
	9		S-3C (4	4"): Med	um dense, light brown fi	fine to medi	ium SAI	ND, little (-) Silt, moist (s	stratified).
12			S-3D (4	4"): Med	um dense, olive fine SA	ND, trace S	Silt, mo	ist.	
<u>الْمَ</u> 13									
			Drillor	onortod	transition from fine accord	d to operat	cond c	t about 14 E fact bea	
^N 15 S-4 10 15-17	7		S-4: Me	edium de	ense, brown fine to coars	se SAND, ti	trace fin	ne Gravel, trace Silt, wet	
<u>لَّ</u> 16		SAND							
	$- \begin{vmatrix} 11 \\ 13 \end{vmatrix}$								
5010.									
<u>}</u> 18	- [23]								
19									
S-5 11 20-22	5		S-5: M	edium de	ense, brown fine to medi	lium SAND,	trace S	Silt, moist.	
<u>21</u>	$-\begin{vmatrix} 9\\12\end{vmatrix}$								
22 22	12								
SAMPLE IDENTIFICATIO	N REMARKS:								
S - Split Spoon	nlo								
R - Core Run		Page No. <u>1</u> of <u>3</u>							of <u>3</u>

Γ										PR	OJECT		Boring	g No: B-20	2	
		7			1				Con	cord Ca	rliele High School		Boring	g Location: Grass hill, bel	nind southwa	ast
		Τ	V	01	22	S			CON	Cor	nisie nigh School		corne	r of existing building		
								-		001			Check	ked by: <u>K. Am</u>	don	
E	ng	inee	ering	g a Sust	ainab	le Fi	uture	N	obis File No	D:	84890.01		Date : Date	Finish: June 8, 2011		
Co	ontra	actor	1	New Hamp	oshire B	oring,	Inc.	Rig	Fype / Mode	el:	CME 550 ATV		Grour	nd Surface Elev.:	172 ft.	
Dr	iller:	:		Bob Th	nompso	n		Ham	mer Type:		Automatic Hammer		Тор-о	f-Riser Elev.:		
No	bis	Rep.	:		BTW			- Ham	mer Hoist:		Automatic		Datun	n: NGVD192	29	
				Drilling N	lethod		Samp	ler	Date	Time	Gro Depth Below Ground (ft)	undwater (Observa	ations	Stabilization	Time
	pe			Drive and	Wash		Split-Sp	oon	₩ 06/08/11	14:55	30	0.0		58.0	0.4	
Si	ze (i	n.)		4"			1-3/8	D								
Ac	lvan	cem	ent	Drive and	l Wash	14	l0-lb Ha	mmer					7			
(ft.)		SAN	/IPLE	INFORMAT		und ter	LITH .u	HOLOGY	<u>/</u>							ARKS
Depth	- T <u>1</u> &	ype No.	Rec (in.)	Depth (ft)	Blows/ 6 in.	Grou Wat	Graphi	Stratum Elev.(ft.	/)		SA	MPLE DESC	RIPTIO	N		REMA
23	3				-											
d 9.5 24	\downarrow				1											
SERIE	_													-		
5002	, S	6-6	11	25-27	6				S-6: N	ledium d	ense, orange/brown fi	ne to mediu	m SAN	D, trace Silt, moist.		
<u>୪୦</u> 26	;				9											
0 27	, –				12											
					-				Wash from about 27 feet to 30 feet bgs consists of coarse sand size particles.							
					-			SAND				2				
J-SON																
BOR 30)	3-7	9	30-32	9	Ā			S-7: N	/ledium d	ense. light brown fine	SAND. little	Silt. m	oist (stratified. rust color a	ıt ∼4" from	
SH 31					8				bottor	n of spoo	n).	,	,			
SILIS 32	2				11											
ORD-O	. –															
	<u></u>															
0 <u>34</u>	-	-														
8 35			40	05.07					0.04	(7")	um donce oregan	the OA		la Silt maint		
LIACI 36		o-8	16	35-37	8				5-8A	(7): IVIEd	um dense, orange/bro	wn nne SA	ות, litt	ଜ ତାୟ, MOISE		
.24 - (, –	_			16			. z ==	= <u> </u> <u>5-8</u> B	(2"): Gray	CLAY & SILT, moist.				/	4
5/1 2/ 2/	╘								S-8C	(7"): Med	ium dense, gray fine to	o medium S	SAND, I	ittle Silt, wet (stratified).		
38 38	8	+			-											
109 39)															
107 201 201	,															
ET M	S	8-9	15	40-42	13 14				S-9: N	ledium d	ense, orange fine to co	oarse SANI	D, trace	Silt, trace Gravel (subrou	nd), wet.	
LATA	2	-+			19											
43	3				1											
		-+			-											
	SAM	PLE	DENT	IFICATION	I R	EMAR	KS:									•
HOLE	G - S -	Geo Spli	prob Spo	e on												
BORE	U - R -	Cor	isturt e Rur	bea Sampl	ie			Page No. 2 of 3							_	

									PF	OJECT	Boring No: B-202								
		7	T _ 1	1				Con	oord Ca	villala Lligh Cabaal		Boring	g Location: Grass hill, be	hind southw	vast				
			\mathbf{O}	01	S		_	Con		Iriisie High School	corner of existing building								
							-		CO			Check	ked by: K. Am	idon					
E	nair	neerin	a a Sust	tainab	le Fu	uture	— —						Start: June 8, 2011						
			0						J	84890.01		Date Finish:June 8, 2011							
Co	Contractor: <u>New Hampshire Boring, Inc.</u>							Type / Mode	el:	CME 550 ATV		Ground Surface Elev.: 172 ft.							
Dri	ller:		Bob Thompson				_ Ham	imer Type:		Automatic Hammer	Top-of-Riser Elev.:								
No	bis R	ep.:		BTW			_ Ham	mer Hoist:		Automatic	Datum: NGVD1929								
			Drilling N	Nethod		Samp	ler	Date	Time	Gro Depth Below Ground (ft.)	undwater C	Indwater Observations							
Ту	pe		Drive and Wash			Split-Sp	oon	¥ 06/08/11	14:55	30	0.0	58.0			0.4				
Siz	e (in.	.)	4"			1-3/8 ID													
Ad	vance	ement	ent Drive and Wash			l0-lb Ha	mmer	3r											
(H.)	SAMPLE		INFORMA	TION	nd er			ŕ					RS						
Depth	Typ & No	e Rec o. (in.)	Depth (ft)	Blows/ 6 in.	Groui	iraphic	Stratum / SAMPLE DESCRIPTION								RMAF				
\vdash															-				
_ 45		0 44	45.47	10				S 10/			to modium	CANE	tropp Cilt wat						
49. 9. 9. 46	5-1	0 14	45-47	12			SAND	S-10A (6"); Dense, orange/brown fine to medium SAND, trace Silt, wet. S-10B (6"): Dense, gray fine SAND, trace Silt, wet.											
ERIE				18			125.2												
\$ 47				30			120.2	S-100	C (2"): Ha	rd, gray SILT & CLAY	(varves 1/4	" to 1/2	" thick) varved with gray s	Silty CLAY	1				
<u>ເຊິ່</u> 48								(varves 1/8" to 1/4" thick), moist. (Piece of 1/2" diameter Gravel in tip of spoon).											
				-				Wash at about 49 feet bgs consists of clumps of cohesive material and coarse sand size particles. S-11: Hard, gray SILT & CLAY (varves 1" to 3" thick) varved with gray CLAY & SILT (1/4" to 1/2" thick) and black Silty CLAY (varves 1/4" thick), moist.											
BOR																			
50 EV	S-1	1 21	50-52	8															
51				17			arved SI												
SUN 52				17			CLAY												
IS/BOI																			
<u>1</u> 53				-															
THE 54							118.0												
NONCONCOLOR	S-1	2 15	55-57	12			SAND	S-12/	(3"): De	(3"): Dense, gray fine SAND, trace Silt, wet.									
0 6 6 6 6 6 6 6 6				23															
57 (E				27				S-120	S-12C (10"): Dense, gray fine SAND, trace Silt, wet.										
LUACTI 20																			
24-0							SAND												
59 59				-			2 D												
60/16/1								_		-									
- TO2	S-1	3 15	60-62	10				S-134	A (12"): D	ense, gray fine SAND,	trace Silt, v	vet.							
2010.0																			
<u>}</u> 62		_		24			110.0 3ILT & CI	AV S-13E	S-13B (3"): Hard, gray SILT & CLAY, moist.										
<u> </u>								Exploration terminated at 62'.											
TEM				-															
DATA																			
<u>65</u>																			
SIVE 66																			
				N R	EMAR	KS:													
HOLE	u G - Geoprope																		
BORE	0 - C R - C	Core Ru	bea Samp n	ne									Page No. <u>3</u>	of 3					

三次						APAG	JECT		Set Bonng No.	<u>с</u> В-З	22.0				
5.44					<u></u>		(I Li			Sheet 1 of 1					
eş A		GI - C			oncord-C	arlisie K. Conco	egional H rd. MA	ign Schoo	FILE NO. 453	W1912					
									Review by	James Handar					
Ĩ	i de de	での	Subsur	face Dri	illing		BODEC	Sec. Mol	See Exp	See Exploration Location Pla					
26	n ans			John			GOUN	Elev		NA					
ŝ	0.4	ryel .	Man	c Fyrber	g		Dates	ante Er		6/15/05					
			Sampling(Proteco						undre valer.Reading	s (See Notes)					
Ness otherwise noted. Doings were						a 2-inch			Pepulio Bolions	Depth to Water					
i S	SPIL OF	oon sampler.	driven by blows of a	1 140 1.6	safety	nammer	6/15	Unining		NE	┢				
l.	30,00			ATTEN ST											
海レ									Service Sample	a Description i					
2	Not	Depth (n)	HOWS DEFUIDE		Keck		Forest	Mat 0.5	Dry deck brown fine S	AND and SILT some O	東記				
	9-1 6-14	0.5.2	1-1-1	18	12		Sub	soll	Very loose, dry, tan-o some (-) Silt, trace (-	range, fine to coarse +) fine to coarse Gra	e E ave				
_	5-2	2-4	6-10-12-16	24	12		<u>~</u>	0	Medium dense, dry,	orange-tan, fine to	0				
				<u> </u>					Silt.	to coarse Gravel, t	ra				
\vdash	5-3	4-6	5-15-15-18	24	18			l	Medium dense to dense, dry, orange-tan, fin coarse SAND, some fine to coarse Gravel, to Silt. Dense, dry, tan-orange, fine to coarse SAND, li (+) fine to coarse Gravel, trace (-) Silt.						
	5-4	6-8	24-20-21-22	24	18										
	_								Very dense, dry, tan-orange, fine to coa GRAVEL, some (+) fine to coarse Sand, trace Silt.						
	5-5	8-10	23-34-28-27	24	12										
							Gra	retly							
	5-6	10-12	7-10-8-9	24	16		5a	па	SAND, little (+) fine	to coarse Gravel, t	rac				
Ļ									Dense, moist, tan-orange, fine to coarse SA						
	5-7	12-14	16-24-20-15	24	15				and fine to coarse GR	AVEL, trace (-) Silt.					
L	<u> </u>	14.16	10.07.30.14	24	16				Very dense, moist, tan to orange, fine to co.						
	5.0	14-10	10-27-52-14	24					SAND, little (-) fine 1 Silt.	to coarse Gravel, tr	~ac				
	<u>a.a</u>	16-18	19-12-13-11	24	18				Medium dense, moist,	tan to orange, fine to	200				
_	5-5								SAND, little (+) fille Silt.	to coarse Gravel, u	гас				
4	5-10	18-20	8-11-21-26	24	18				Dense, moist, tan to o	range, fine to coarse Gravel trace (2) Sil	* 5. Ír.				
_							20	.0			~				
	S-11	20-22	21-14-9-10	24	16				Medium dense, dry, ta	n, fine SAND, trace S	Sili				
:	5-12	22-24	14-10-9-9	24	18		Fin	e	Medium dense, dry, ta	n, fine SAND, trace s	5ilt				
							Sar	nd	-						
									Medium dence das ta	n fine SAND trace	Silt				
-	5-13	25-27	5-27 9-8-10-8 24		4 24		27.0		measure actor, ary, and the Star, trace Sile.						
						t	27.0								
_									Bottom of boring at $27.0 \pm \text{fcst}$.						
_									9 -2-						
											_				
е С	Fround	water was n	ot encountered at i	the time	of tho	boring.									

13)	• •			n an	14			a territor di stati	alan ang a	15		See opposit	Nation 1 - John and
73	B		La uno marco ana Anto a constructor a constructor A Marco a constructor a constructor a constructor a constructor a constructor	Ą	GREL 131	B	C	· · · · · · · · · · · · · · · ·	A	GREL 131	B	\subset	
			SWTEL O	2	TOPSOIL			GWT=1-0"	2	TOPSOIL			
TO CRG				6	CRS TO MED				24	FINE SAND &			
LITTLE			And have been a second of the R	10	TOPAY CAND			4'.2'	6		Eppendise - Analysis engl 1, son		
SAND	4	1.180.0, y = 7.		18	TRACE	5	a		12	CRS TO FINE	1	5.	
	·	5	dame na ningkan parimikangka, n - n - kanjin fanding	22			3	this year open 10 maps - s restant - r	22	SAND	1	68	
				31	OBAVEL				31			. 1	
				31					35				
-	265	6	Nica			Zie	10,1	11:10"			2	9 H 12	
WOND	ATER		_1.V	· · ·						I many many party a desired a desired			

